
Bringing great research ideas
into open source communities

AIOps
Hema
Veeradhi on
Prometheus
Anomaly
Detection

Fuzzing hypervisor
virtual devices

Hardware is back

Research Day
Europe update

+
Kit
Murdock

an open source
swashbuckler

Volume 2:1 May 2020
Research Quarterly

RH
RQ

14

facebook.com/redhatinc

@redhatnews

linkedin.com/company/red-hat

ABOUT RED HAT Red Hat is the world’s
leading provider of open source software
solutions, using a community-powered approach
to provide reliable and high-performing cloud,
Linux, middleware, storage, and virtualization
technologies. Red Hat also offers award-winning
support, training, and consulting services. As
a connective hub in a global network of enter-
prises, partners, and open source communities,
Red Hat helps create relevant, innovative tech-
nologies that liberate resources for growth and
prepare customers for the future of IT.

Table of Contents

14
04

0620

From the director

Departments

06 News: Research Day Europe

30

Research project updates

09 Fuzzing hypervisor virtual
devices

Features

14 Open source
swashbuckling: an
interview with Kit Murdock

20 AIOps: Prometheus
anomaly detection

24 Hardware is back

NORTH AMERICA
1 888 REDHAT1

EUROPE, MIDDLE EAST,
AND AFRICA
00800 7334 2835
europe@redhat.com

ASIA PACIFIC
+65 6490 4200
apac@redhat.com

LATIN AMERICA
+54 11 4329 7300
info-latam@redhat.com

V O L U M E 2 : 1

RESEARCH
QUARTERLY

https://twitter.com/redhatnews

research.redhat.com4

I have spent a lot of time in the last couple
of weeks thinking about the importance of
connections. In open source software and in

university research, the connections—between
people, their work, and the ideas they have in
common—are often more important than any
single individual. I was really interested, therefore,
to read Kit Murdock’s thoughts
in this issue’s interview: “Look
at my paper… It’s this mass
of people sharing ideas, and
some people latch onto one
and they want to run with it
that way. That’s what makes
great research for me: the
collaboration, the ideas,
the spin off.” Contrast this
reality with the myth of the
lone developer in a cave,
or the solitary genius in his
(and myths are usually about
his) secret laboratory. The
power of communication,
of willingness to learn from
each other, of connection
around ideas, is the real engine that drives
research as well as open source development.

We have taken this to heart at Red Hat Research,
and it accounts for most of the work we do. Take
for example our second ever Red Hat Research
Day, the first to be held in Europe. We brought

About the Author
Hugh Brock is the

Research Director for
Red Hat, coordinating

Red Hat research
and collaboration
with universities,

governments, and
industry worldwide.
A Red Hatter since
2002, Hugh brings

intimate knowledge
of the complex

relationship between
upstream projects

and shippable
products to the task

of finding research to
bring into the open

source world.

Only connect

together researchers, Red Hat developers,
and interested industry folks to hear talks on
everything from adaptive learning to side channel
attacks. The goal of the day, as for every Research
Day, is to connect people with common interests
and to influence the direction of research so
that it makes an impact. Gordon Haff ably sums

up the event in his piece
“From dolphins to data to
stars.” For videos of the
talks and the slides we saw
that day, see our website:
research.redhat.com/
research-day-brno. One
immediate impact I noticed
was a lively exchange of
ideas around better ways
to identify dolphins from
audio recordings using
machine learning (for more
see RHRQ 1:4, “Under
the sea: deep learning
in marine biology”).

One connection becoming
more interesting these days is around hardware
design. Between open source ISAs like RISC-V,
accelerators of all shapes and sizes, improved
memory architectures, and more efficient
network protocols, we are seeing an explosion
of improvements that we hope will combine
to produce major gains in compute capacity

From the Director

In a time when connections are difficult, open source and
open science help us maintain our ties even at a distance.

by Hugh Brock

RESEARCH
QUARTERLY

V O L U M E 2 : 1

5research.redhat.com

over time. In his piece “Hardware is
back,” Uli Drepper lays out the path
we expect things to take. Software
and hardware vendors will need to
connect and cooperate broadly as
never before to take advantage of
these architectural improvements
and make them available to users.

Finally: As I write this, we in the U.S.
are joining the rest of the world in
beginning a period of “work from home,”
of separating ourselves physically from
each other to slow the progression of
the COVID-19 virus. No one knows how
long it will be before things return to
“normal,” if they ever do, but in a time
when people mostly can’t see each other
in person, virtual connections and virtual
teamwork are going to become more
and more important and more and more
common. Perhaps surprisingly, I think
this will be a shining moment for open
source software and for research done
in the open—when we are physically
separated, our virtual connections must
become stronger, and making them
in the open makes them more robust
and more lasting. That is, unless all our
videoconferencing melts the Internet...

...when we are physically
separated, our virtual

connections must become
stronger, and making them

in the open makes them
more robust and more

lasting.

RH
RQ

SAVE
THE DATE

Research Day, US
Red Hat

09/22/2020
Boston, MA

More information: research.redhat.com/research-day

V O L U M E 2 : 1

RESEARCH
QUARTERLY

research.redhat.com6

The phrase “academic
research” may
evoke thoughts of

researchers sequestered
in ivory towers, developing
theories of what is possible
or probable. That work is
critical to the development
of knowledge. But Red
Hat seeks out academics
focused on understanding
the limitations of the
current state of computing
and finding practical
solutions or different
ways of doing things that
can have an immediate
impact on how we use
computers and data.

Red Hat Research Day, held January 23, 2020,
in Brno, Czech Republic, brought together
members of the global research community who
are finding those pragmatic solutions, sometimes
by developing new methods and sometimes by
combining approaches to provide new results.
They covered a lot of ground, ranging from
data-intensive science and software to
security and privacy to code analysis and
verification. All sessions were recorded in
full and are available at research.redhat.com.
These are just some of the highlights.

About the Author
Gordon Haff is

Technology Evangelist
at Red Hat, where he

works on emerging
technology product

strategy, writes
about tech trends
and their business

impact, and is a
frequent speaker at

customer and industry
events. His books

include How Open
Source Ate Software

and his podcast, in
which he interviews
industry experts, is

Innovate @ Open.

Dolphins, data, and stars

OPEN CLOUD TESTBED
Michael Zink of the University of Massachusetts
Amherst led off the day with a discussion of
the U.S. National Science Foundation-funded
Open Cloud Testbed (OCT) project, which
integrates testbed capabilities into the Mass
Open Cloud (MOC, massopen.cloud), an existing
high-performance cloud that allows academic
users to run their research projects at no cost.

Using public clouds for certain types of
computer science and engineering research
also creates challenges. For example, the cloud

News

Real-world applications shine at Red Hat
Research Day Europe.

by Gordon Haff

RESEARCH
QUARTERLY

V O L U M E 2 : 1

7research.redhat.com

abstractions over their physical
underpinnings can prevent access to
data useful for research purposes,
such as telemetry data about power
consumption. A testbed running
in the Massachusetts Green High
Performance Computing Center
(MGHPCC) allows greater access
to low-level hardware and software
than is possible with commercial
public cloud offerings. OCT will also
provide field-programmable gate
arrays (FPGAs), which can be used to
research configurations such as Bump-
in-the-Wire, a method for performing
functions such as encrypting data
on real-time network links.

MAKING SENSE OF BIG DATA
Gabriel Szász, a graduate student at
Masaryk University in Brno, together
with a team from Red Hat, talked about
their collaborative project using Red
Hat® OpenShift® Container Platform
for high-performance computing.
Szász is studying the effects of
rotation on the measured properties
of stars, a question in the field of
quantitative spectroscopy, one of the
cornerstones of modern astrophysics.
This study is part of research into
the stellar atmosphere model grid.

One of the challenges with this work
is that a number of the software
components used in the course of
spectroscopy calculations are very
old and often written in languages
like FORTRAN and Ada. But rewriting
them would be time consuming, and
the rewrites would be subject to
acceptance by the broader research

community. Red Hat® OpenShift®
provides the ability to containerize
these components while providing a
modern developer experience for new
code. OpenShift also provides metrics
and dashboards using Prometheus
and Grafana. Finally, OpenShift
provides the flexibility to run the
workloads (and store the 100TB or
more of data) on different types of
hardware infrastructure as needed.

Georgia Atkinson, a Ph.D. candidate
student studying bioacoustics at
Newcastle University in the United
Kingdom, presented “Acoustic
Identification of Cetaceans,” another
data-related session. Cetaceans
(which include porpoises, dolphins,
and toothed whales) are typically top
predators in their environment, so their
health and numbers tell us a great

deal about the health of the marine
ecosystem as a whole. One of the
techniques for identifying many types of
cetaceans is passive acoustic monitoring
(PAM), which can distinguish individuals
even within the same species by their
signature whistles. This talk highlighted
the challenges associated with
distinguishing these signature whistles
among the nine months of ambient
sounds collected by three hydrophones.

Techniques included converting the
audio to spectrograms that make it
easier to detect distinctive frequencies,
taking advantage of crowd-sourced
dolphin sightings to pinpoint times of
particular interest, and filtering samples
by the amount of potentially interesting
frequency sounds present. It was a
useful reminder that real-world data
rarely comes clean and ready to use.

V O L U M E 2 : 1

RESEARCH
QUARTERLY

8 research.redhat.com

UNDERVOLTING AND
PLUNDERING PROCESSORS
During the afternoon’s security
and privacy track, Kit Murdock, a
Ph.D. candidate at the University
of Birmingham (United Kingdom),
presented “Plundervolt: Pillaging and
Plundering SGX with Software-Based
Fault Injection Attacks.” By taking
advantage of a documented interface
to dynamically modify processor
frequency and voltage, Murdock
showed how undervolting a processor
could be used to create consistent bit
flips. Building on the body of existing
research into security exploits that
take advantage of bit flips, Murdock
demonstrated how undervolting a
processor could serve as the basis for
RSA, AES, and memory corruption
attacks even where Intel’s Software
Guard Extensions (SGX) were in use.

FORMAL VERIFICATION OF CODE
The final track of the day was dedicated
to code analysis and verification.
While talks dove into a number of
different areas, the primary focus
was on formal verification, which
can prove correctness of code.

Today, as described by Red Hat’s Kamil
Dudka, static analyzers are run against
the 300 million lines of code and 3,000
RPM packages in Red Hat® Enterprise
Linux®. There’s a full scan run for each
major release and differential scans
for each subsequent update. Static
analyzers have the advantage of being
fast and flexible, but they give both
false positives (flagging bugs that aren’t
there) and false negatives (missing

bugs that are, in fact, present). This
wastes a lot of time when people are
either looking at nonexistent bugs, on
the one hand, or potentially shipping
software with bugs, on the other.

Red Hat is now experimenting with the
formal verifiers Symbiotic and Divine,
developed by research groups at
Masaryk University. Formal verification
doesn’t generally replace static
analysis, because it’s more difficult
to use, consumes more resources,
doesn’t use a predictable amount
of compute resources or time, and
doesn’t deal well with libraries and other
dependencies. However, for certain
uses, code analysis that doesn’t have
false positives and negatives while
proving code correct is a worthwhile
tradeoff. The goal of this research is
to augment static analysis with formal
verification for important areas of code.

WRAP UP
Red Hat Research Day Europe
2020 highlighted just how relevant
fundamental research remains to areas
as diverse as systems engineering,
high-performance computing, data
analysis, and code verification.
This research can be enabled by
commercial products such as Red
Hat® OpenShift® Container Platform,
which provide a platform and simplify
development for scientists who are
not necessarily computer scientists or
software developers. For those of us
in the field, research into technologies
such as formal code verification
can help improve the quality of all
software products in years to come.

You can find the
complete program
and videos of the

presentations at https://
research.redhat.com/
research-day-brno/

RH
RQ

RESEARCH
QUARTERLY

V O L U M E 2 : 1

research.redhat.com 9

About the Author
Alex Bulekov is
an intern at Red
Hat interested in
Systems Security.
He is a Computer
Engineering Ph.D.
student at Boston
University, advised
by Professor
Manuel Egele.

Feature

Fuzzing hypervisor virtual devices
A security exploit in a popular hypervisor can expose an entire
cloud, and all of its users, to theft or worse. Yet hypervisors are
notoriously difficult to test because the input space is so large.
This joint Red Hat Research/Boston University project takes a
novel approach to the problem: use a fuzzer to test all available
input combinations.

by Alex Bulekov

Hypervisors—the software that allows a
computer to simulate multiple virtual
computers—form the backbone of cloud

computing. Because they are both ubiquitous and
essential, they are security-critical applications
that make attractive targets for potential
attackers. Past vulnerabilities demonstrate that
implementations of virtual devices are the most
common site for security
bugs in hypervisors. To
address this problem, we
have developed a novel
method for fuzzing virtual
devices and implemented
it for the popular open
source QEMU hypervisor.
Our fuzzer combines a
standard coverage-guided strategy with further
guidance based on hypervisor-specific behaviors.
It guarantees reproducible input execution and can,
optionally, take advantage of existing virtual device
test cases. In our evaluation, we found and reported
previously unknown bugs in devices such as serial
and virtio-net, ranging from memory corruptions
to denial-of-service vulnerabilities. Our evaluation

demonstrates that combining well-known coverage-
guidance techniques with domain-specific
feedback results in promising fuzzer performance,
even for complex targets such as hypervisors.

HYPERVISORS AND VIRTUAL DEVICES
Hypervisors, or virtual machine monitors (VMMs),
are the cornerstone of cloud computing today.

Full-system virtualization
offers capabilities such as
rapid scaling, live migration,
and high availability,
without any modifications
to the end user’s software.
Even increasingly popular
container-based workloads
usually run on top of

virtual machines (VMs). Pricing on the cloud is
competitive, since multiple customer workloads
are collocated on the same bare metal server.
Cloud providers and their customers expect
the virtualization layer to isolate VMs from each
other. In fact, hypervisor isolation is trusted to
such a degree that disposable VMs are commonly
used for analysis of dangerous malware.

Our fuzzer combines a standard
coverage-guided strategy with

further guidance based on
hypervisor-specific behaviors.

V O L U M E 2 : 1

RESEARCH
QUARTERLY

research.redhat.com10

Hypervisors’ key feature—providing a software
abstraction over the underlying hardware—is also
their Achilles’ heel. The software abstraction is
composed of meticulously implemented models
of devices, which must be compatible with the
guest OS’ hardware drivers. Device modeling is a
complex task, with ample opportunity for errors.

Moreover, a single bug in
a virtual device can leave
millions of VMs exposed to
attacks. For example, in 2015
security researchers from
CrowdStrike discovered the
VENOM vulnerability: a bug
in virtual floppy drive code,

accessible by default in all x86 VMs running on the
QEMU, Xen, and VirtualBox hypervisors. Virtual
device implementations like this one are the
most common site for VM escape vulnerabilities.
Out of the 12 published QEMU CVEs in 2019,
10 were related to vulnerabilities in code
accessible through virtual device interfaces.

Fuzzing is a technique for dynamically
generating and executing randomized
test cases. In the past decade, fuzzing has
successfully detected thousands of bugs. For
example, Syzkaller, a kernel fuzzer, has found
over 350 bugs in the Linux kernel alone.

Guided fuzzers leverage information, such as
code coverage, to identify randomized inputs
that result in new program behaviors. A guided
fuzzer identifies these inputs and provides them
to a mutation engine, which performs operations
such as byte swaps with the expectation that small
mutations may uncover more program behaviors.

RESEARCH PROBLEM
Due to the potentially critical nature of virtual
device vulnerabilities, fuzzing is a natural
direction for proactively fixing bugs in the

hypervisor. Unfortunately, in contrast to
programs such as image libraries, network
servers, and parsers, hypervisors expose
a significantly larger input space, which is
difficult to target with a standard fuzzer.

Consider the attack surface for VM escape
attacks. Since the operating systems running in
VMs communicate (or expect to communicate)
through peripherals, hypervisors implement virtual
devices to simulate them. In the past, virtual
devices were commonly based on real devices,
such as Cirrus Video or SoundBlaster audio
cards, since the real devices already had driver
support in mainstream operating systems. Physical
hardware faces a different set of constraints
than virtual devices, however, so virtual devices
often performed suboptimally. As VMs became
ubiquitous and inefficiencies resulted in real costs,
hypervisor developers designed and implemented
paravirtualized devices. Unlike older virtual
devices, paravirtualized devices are not based on
any physical device. Instead, they are optimized
specifically for virtualization. Virtual devices are
typically implemented in software with hundreds
of thousands of lines of code. Device virtualization
is the main interface between virtual machines and
the underlying host, and composes a major portion
of the attack surface accessible from the guest.

Operating systems typically rely on three major
interfaces for communicating with virtual devices:

•	 Port-Mapped IO (PMIO) relies on
special x86 instructions (in and out)
to access a special 64k-address space
mapped to IO device registers.

•	 Memory-Mapped IO (MMIO) devices
have their registers mapped into main
memory (accessible with standard memory
access instructions such as read/write).

 In the past decade, fuzzing
has successfully detected

thousands of bugs.

RESEARCH
QUARTERLY

V O L U M E 2 : 1

11research.redhat.com

•	 Direct Memory Access (DMA)
relies on additional hardware to
provide virtual devices with direct
access to main memory. This results
in fast, asynchronous access to
large amounts of data, without
the need for the OS to copy data
over MMIO/PMIO. DMA is used
in heavy-bandwidth devices such
as network and graphics adapters.
DMA-capable devices still rely
on PMIO and/or MMIO, since
the CPU must communicate the
location of DMA data to devices.

In combination, these I/O interfaces
expose a virtually limitless input
space, while fuzzers perform best
with small inputs. Our work aims to
reshape the virtual device input space
to facilitate fuzzing while maintaining
performance and ensuring that inputs
are reproducible. We implemented
fuzzing for the open source QEMU
hypervisor, which is used in systems
such as Red Hat® Virtualization, OVirt,
OpenStack, Gnome Boxes, libvirt, and
proxmox. Much of our work has already
been upstreamed, improving the
security of QEMU and its derivatives.
However, the concepts we discuss
are applicable to other hypervisors.

DEVICE-TAILORED FUZZ
Our fuzzing system features two main
modes of operation. In the first mode,
the fuzzer’s input is interpreted by a
device-specific stub. For example, to
fuzz the virtio network adapter, we
wrote a parser (fuzz target) designed
to accept randomized inputs and
convert them into device IO actions.

The sequence of actions and the
data associated with each operation
are dictated by the input. The virtio
network device exposes queues for
data tx/rx and device configuration.
Using QEMU’s existing testing
APIs, we developed a fuzzing target
that can result in interactions with
each virtio-net IO queue. Manually
developing this target allows us
to ensure that inputs are handled
both safely and correctly. For
example, after queuing an input for
processing by the virtio-net device,
the fuzzer ensures that the input
is eventually marked as used.

DEVICE-CONFIGURATION-
AGNOSTIC FUZZING
Ideally, we could write tailored
fuzzing code for each virtual device.
But this would be an overwhelming

task: the device-specific expertise
required to write such a target, the
sheer number of devices, and the
possibility of overlooking portions of
the input space make this method
impractical. Motivated by this
problem, we developed our second
fuzzing mode: the configuration-
agnostic mode. The configuration-
agnostic fuzzer tests an arbitrary
hypervisor configuration, without
any device-specific code. Instead,
the configuration-agnostic fuzzer
relies on generic hypervisor APIs
to refine the feedback provided to
the mutation engine and increase
the chance of triggering new virtual
device behaviors. Figure 1 illustrates
how our generic approach initializes
the fuzzer, interprets randomized
inputs, and leverages feedback from
the hypervisor during execution.

Figure 1. System diagram

V O L U M E 2 : 1

RESEARCH
QUARTERLY

12 research.redhat.com

Initialization
The generic fuzzer adapts to any
virtual device configuration. In a
normal VM, the BIOS and bootloader
typically enumerate all PCI-capable
devices and map their registers to
corresponding IO/MMIO regions.
Since we wish to interact with these
device registers before performing any
fuzzing, we perform PCI enumeration
to enable all virtual device register-
ranges. As mentioned, the Port-IO and
RAM address spaces, which contain
regions mapped to virtual devices, are
expansive. To ensure that reads/writes
to the address spaces trigger virtual
device behaviors, we leverage the
hypervisor’s memory API to enumerate
all addresses directly mapped to IO
device handlers. Using this internal
hypervisor API, we locate all enabled
PCI devices and devices mapped
to hard-coded Port-IO and MMIO
locations, obtaining a list of address
ranges connected to virtual devices.

Inputs
Similar to the device-tailored fuzz
targets, we rely on a parser to convert
fuzz inputs to Device I/O actions. To
maintain device generality, this parser
results in simple read/write operations
to Port IO and MMIO locations, rather
than interacting with device-specific
abstractions, such as queues. By
leveraging the IO ranges identified
during the initialization stage, we
ensure that the fuzzer interacts only
with address regions mapped to virtual
device registers. Our interpreter is
based on a simple opcode grammar.
Addresses are represented using tuples

of the index of the address region, and
the offset within the address region.

In [Index, Offset] :
Read from a Port IO address

Out [Index, Offset], Value :
Write to a Port IO address

Read [Index, Offset] :
Read from an address in RAM

Write [Index, Offset], Value :
Write to an address in RAM

Memset [Index, Offset], len, buf[] :
Fill len bytes at an address in RAM by
repeating the pattern contained in buf[]

DMA buf[] :
DMA reads will be populated
with the pattern in buf[]

For individual reads/writes to Port IO/
MMIO, the opcode additionally encodes
the size of the access (1 byte, 2 bytes,
4 bytes, or 8 bytes). Each fuzz input
is parsed into one or more OpCodes.
For values with limited ranges, such
as opcode numbers or address-range
indices, we take the modulo of the
value with respect to the maximum
possible value of the field. The opcode
language can produce arbitrary input
sequences to PMIO and MMIO devices.
Figure 2 shows how a random byte
sequence is interpreted and executed
as a sequence of memory and Port-IO
actions. In this example, the “C0DE”
byte sequence serves as a separator
between actions. As mentioned
previously, in addition to PMIO- and

MMIO-based communication, devices
often rely on direct access data in main
memory. Since data can be at arbitrary
locations in memory, we cannot isolate
possible DMA regions in advance.
Instead, we instrument the memory
access API to populate DMA buffers,
just in time for devices to access them.

Feedback
We base our fuzzer on the libfuzzer
library. By default, libfuzzer relies on
coverage feedback to guide input
mutations. Unfortunately, this feedback
alone is often insufficient. For example,
DMA-capable devices often treat
values written to Port IO and MMIO
registers as RAM addresses. On a
system with a 64-bit address space,
there is a very small chance that a
random 64-bit value corresponds to
a valid physical address, since 64-bit
systems can theoretically support
exabytes of physical memory. To
address this problem, we instrument
QEMU’s memory access API to

Figure 2. Input example

RESEARCH
QUARTERLY

V O L U M E 2 : 1

13research.redhat.com

compare memory addresses against
the physical memory limit. Inputs
triggering access to addresses
within or close to the small physical
address-space range result in positive
coverage feedback, and are prioritized
by the fuzzer’s mutation engine.

PERFORMANCE AND STABILITY
The success of our fuzzer hinges
on its ability to rapidly mutate and
execute inputs. Additionally, the
fuzzer should reset device state to
ensure identical behaviors for multiple
executions of the same input, to
ensure that input mutation is effective.
Though these requirements are not
unique to hypervisor fuzzing, the
memory requirements and startup
overhead over virtual machines
exacerbates the problem. We first
attempted to reset the virtual device
state by rebooting the guest VM.
Unfortunately, rebooting leads to
expensive performance overheads.
We encountered the same issue when
relying on QEMU snapshotting features
to rollback VM state after each run.

Instead of relying on a built-in QEMU
feature to reset device state, we
implemented a fork-server mechanism
to guarantee that any virtual device
changes do not leak between runs. The
fuzzer starts the guest and initializes
PCI devices in a single “server” process.
After the heavy initialization is complete,
the parent process generates and
mutates inputs. Rather than executing
them directly, however, it uses the
fork() system call to create a duplicate
QEMU process to safely execute the

generated input without affecting any
of the server process state. To report
coverage information to the mutation
engine, we mark the memory containing
coverage bitmaps as “shared.” This
approach not only avoids expensive
initialization/cleanup for each run,
but also guarantees that inputs do
not leak state, and are reproducible.

FUZZING IN PRACTICE
We implemented tailored fuzzers for
QEMU virtual devices including virtio-
net, virtio-scsi, megasas, and i440x.
We also implemented the device-
agnostic fuzzer, which enabled us to
rapidly fuzz over 70 configurations
of QEMU devices. We have already
reported bugs in QEMU’s serial console,
virtio-net, virtio-blk, virtio-scsi, MSI-X
implementation, many of which have
already been fixed. Our testing identified
several classes of bugs, including null-
pointer dereferences, stack-overflows,
heap-overflows, and assertion failures.
We are developing tooling to report
bugs to developers efficiently, along
with instructions for reproducing them.

As a result of our work, QEMU users
are already safer from VM escape
attacks. In the future, we will continue to
explore ways to leverage the hypervisor
abstraction to facilitate virtual device
fuzzing. We are also exploring ways
to leverage our system to fuzz data
entering VMs, such as incoming network
traffic. Implementing QEMU fuzzing on
the OSS-Fuzz platform, now in process,
will enable long-term continuous
fuzzing of existing QEMU code and
the development of new patches.

T

The success of our
fuzzer hinges on its

ability to rapidly mutate
and execute inputs.

RH
RQ

V O L U M E 2 : 1

RESEARCH
QUARTERLY

research.redhat.com14

About the Author
Lily Sturmann

joined Red Hat in
2019 after obtaining
her master’s degree

concentrating in
software engineering

from the Harvard
Extension School. She

works as a software
engineer on emerging

technologies using
hardware-based

encryption to improve
the runtime security

of applications in the
cloud, specifically the

Enarx project. She
is an open source

enthusiast and
believes that the users

of technology should
have the opportunity
to be the shapers of

technology as well.

Open source swashbuckling

Interview

Kit Murdock’s team approach to cracking
cybersecurity puzzles

by Lily Sturmann

We first met Kit Murdock at her fascinating
talk on the Plundervolt exploit at Red Hat
Research Day Europe. It quickly became

clear we had to learn more, both about her story
and about what attracted her to cybersecurity
research. We asked a newly minted member of our
own cybersecurity team, Lily Sturmann, to interview
Kit. We think you’ll find the answers as intriguing
as the now-famous Plundervolt logo she inspired.

Lily Sturmann: I want to talk a little bit about
Plundervolt to start, which is some very exciting
new research that you presented at Red Hat
Research Day Europe, in Brno, Czech Republic, in
January 2020. Could you give a three-sentence
summary of what Plundervolt is about?

Kit Murdock: Plundervolt is an attack on Intel
SGX enclaves, which are trusted execution
environments. We showed that we can get secrets
out of SGX enclaves by lowering the CPU voltage
while it is performing calculations. Plundervolt is
a problem because SGX has an attacker model
that says, “Even if you’re root, you should not
be able to look inside my encrypted area.”

Plundervolt came out of another attack called
CLKscrew, which was the first of its kind. Which
is kind of cool in cybersecurity, to do a first
of its kind! Normally when people talk about
hardware faulting, they think of an oscilloscope
and some wires, and you’re having to take

things apart. The fact that you could modify
something in software and it would have a
hardware impact is kind of a new attack.

It was from that attack, which happened on ARM,
that we moved over to Intel and said, “Well in this
attack, they attacked frequency. Maybe we can
attack voltage.” It was because of the granularity:
with frequency you can have 2.8 gigahertz, 2.6
gigahertz, but there’s nothing in between. It’s
very hard to change frequency, whereas voltage
you could drop millivolt by millivolt. So we tried
setting frequency to be one thing and dropping the
voltage a very small amount. We found we could
get faults and we didn’t have to open anything up
and we didn’t have to get an oscilloscope out.

Lily Sturmann: That’s a much more powerful type
of vulnerability, and it’s much harder to fix as far as
I understand it, because the attacker doesn’t have
to be there on premises manipulating anything.

Kit Murdock: Yeah. And if you’re an employee
of a cloud provider and you’ve got access to
machines, you can create hardware faults on them.

Lily Sturmann: Your attack has this great
catchy name as well. Can you tell us a
little bit about the naming process?

Kit Murdock: So when we actually submitted
the paper, it was called Undervolt. But actually

RESEARCH
QUARTERLY

V O L U M E 2 : 1

research.redhat.com 15

we’d come up with a few names, and we left
them all in the paper, sort of hidden in the
comments. I was a little bit sneaky in that I got
my partner to mock up a few logos, pirate-
themed logos, because I liked the name
Plundervolt. I was the most junior person on the
paper, but when [the other authors] saw the
pirate-themed logo, they jumped on board.

And the thing that became interesting was that
logo, the Plundervolt logo. Like if you Googled it,
the only thing you could see was people taking

the logo and putting it on top of chips. It caught
a lot of attention, which in retrospect is brilliant.

Lily Sturmann: And that must also, in a smaller
way than the research itself, feel validating to have
that as a cool idea that turns out to be right?

Kit Murdock: Yeah. Because I’m new to the field
but have a lot of life experience, there is a little bit
of a weird dynamic in that I want to say, “Actually
I think I’m right,” but on the other hand, my
supervisors have been in academia for 20 years so

Kit Murdock is
currently pursuing a
Ph.D. in cybersecurity
at the University of
Birmingham. Her
research interests
include embedded
hardware- and
software-based fault
injections. Kit has
been building and
researching a tool to
enable testing and
evaluation of hardware
fault injection using
software emulation.
Kit currently runs the
University’s Ethical
Hacking Club, AFNOM
(A Finite Number
of Monkeys), which
encourages students
to learn offensive
security in a friendly,
informal environment.

V O L U M E 2 : 1

RESEARCH
QUARTERLY

research.redhat.com16

it’s very hard to say, “No you’re wrong.” It also is a
balancing act, because on the one hand we want
our work out there and we want people to know
about it, but we also want to be taken seriously
and you want to get more research grants.

Lily Sturmann: I wanted to ask you
about the impact of open source on your
project. Does open source relate to your
research particularly, and if so how?

Kit Murdock: So we use a whole host of open
source tools. First, we built upon somebody
else’s research. And it turns out we weren’t the
only people who had the idea, because there
have been other very similar things that have
come after us. The second thing is we wanted
to be able to do what the CLKscrew researchers
were doing: we wanted to modify in software
something that changed the hardware and we
didn’t know how to do that. Intel actually didn’t
document how to do it, but people on the Internet

wanted to know how to overvolt and undervolt
their computers, and they had found a model-
specific register that you could modify in software.
They’d reverse engineered it and they’d put it out
there for everyone to share, to see, and to use.

Then I came to look at some tools for overclocking
and my mind was blown. There’s probably 20 or 30
tools, lots of people who are all creating tools for
other people to use that they just give away mostly.
So we relied on people just doing something
because they wanted to and sharing the knowledge.

Then, when we’d formed some attacks, we just went
to Github and typed in Lenstra attack, got a Python
script, and we found the vulnerability within a few
hours, because we’re using somebody else’s script
to actually read the data and produce the outcome.

Lily Sturmann: You mentioned that you all
worked with Intel a little bit to actually disclose
this. I’m curious about what that process was like,
because Intel has an interest in disclosing this type
of information in a specific way. What was their
response and how was it to work with them?

Kit Murdock: They were great. So we sent them
a proof of concept and they came back not long
after saying, “Yes, we’ve evaluated it, and, yes, we
acknowledge that this is a real thing.” And then we
found a few more attacks, which we also sent to
them. We told them we were submitting a paper
and what the deadlines were and when we’d hear
it, and they were really interested in the whole
thing. I think they were really good to us. They
were really keen to know what was going on.

The thing I’d like to know is did they know more
about the vulnerability than us? So after we
disclosed it, I’d love to know whether they went and
had a look under the hood and went, “Oh no, this
is terrible.” At no point did they come back and go,

RESEARCH
QUARTERLY

V O L U M E 2 : 1

17research.redhat.com

“Oh by the way, did you know you can
also do this, this, this, this, and this.”

Lily Sturmann: Yeah, that’s too
bad because I’d also be curious.

Kit Murdock: We actually don’t
know the underlying problem. We can
make some educated guesses and
hypothesize; I think we can be fairly
sure. But I wonder if there is someone
in Intel who knows this exact problem
and you can reproduce it like so.

Lily Sturmann: Do you have a
hypothesis that you want to share?

Kit Murdock: Well, it’s just that the
operations aren’t completing before the
next clock ticks over. So there’s a clock
tick and whatever’s in that register just
gets taken and used. If the register is
inaccurate because the computation
hasn’t finished, it’s got flipped bits, but
obviously that’s about 5% of what’s really
going on. And it’s very hard to flip the
very low bits. Like we couldn’t get one to
flip or two or four. So it’d be interesting
to know, is there a way to get them to
flip or is that never going to happen?

Lily Sturmann: I remember it was also
the more complex operations where
this was easier to manipulate. You had
said in the paper, it’s probably because
those take longer to get around the
circuitry because there’s more going on.

Kit Murdock: Yeah, they are
aggressively optimized, I think is
the phrasing we use. They just fit
within the number of clock cycles.

So, if they waver by a little bit,
suddenly the answer is wrong.

Lily Sturmann: You worked on a
fairly large team doing this research,
which I think relates to open source
because it’s a collaborative approach
to working. Tell me a little about that.

Kit Murdock: I’m going to talk a little
bit about something that sometimes
annoys me, which is when you go for
a job interview or something, people
often value super technical skills. But
sometimes it is more important to have

the skill of working with people and
knowing that you’re going to have to
accept that somebody else may know
the right thing and it may be different
to the way you feel about it. I feel that
sometimes these skills aren’t appreciated
as much as, “Oh, you can hack for four
hours straight without needing a cup of
tea.” I don’t know that four hours straight
without a drink is productive. Maybe
two blocks of two hours with a cup of
tea in the middle is more productive.

Lily Sturmann: Definitely.

Kit Murdock: I mean, look at my
paper, it has six names on it. This is not
a single person sitting in a dark room

for 40 hours straight. This is people
talking and having ideas and going,
“I don’t think so, but try it,” and then
going, “Actually, you were right.” It’s
this mass of people sharing ideas, and
some people latch onto one and they
want to run with it that way. That’s
what makes great research for me: the
collaboration, the ideas, the spin off.

Lily Sturmann: I want to ask a little bit
about how you got into the field. You
said earlier that one of the qualities you
think is most determinant of someone’s
success is actually resilience, which
I couldn’t agree more with. So I was
hoping you could say a little about your
experiences with that, just being new in
the field and what that experience is like.

Kit Murdock: I did a career change—I
used to write help desk software. I could
see the writing on the wall because a
lot of work was being taken from the
U.K. and sent offshore. I could see that
my days were numbered in terms of
having an income. So I decided to do a
career change and I became a maths
teacher in a secondary school. I didn’t
last very long because I didn’t like it. But
actually, it’s weird, because it almost
feels now like a natural progression.

Maths is one of those subjects that
people always say, “Oh I’m no good
at maths. Oh, never been any good at
that. I just don’t get maths.” And what
the research says about teaching kids
maths is that we have to get away
from telling a child, “You’re good at
maths. You’re bad at maths.” We have
to talk about the effort that’s given,

That’s what makes great
research for me: the

collaboration, the ideas, the
spin off.

V O L U M E 2 : 1

RESEARCH
QUARTERLY

18 research.redhat.com

so, “I can see you worked hard.” And
when someone fails, don’t say, “You
failed,” say, “You’re not there yet. It’s
going to require a bit more work.”

One of the indicators of success in
children in relation to maths is what
they termed resilience. When a problem
is difficult, how soon does the child
push the paper away and go, “I can’t
do it,” or, “It’s too hard,” or, “I’m no
good at maths.” We have to change
their mindset to say, “Okay, I need to
work harder,” or, “I haven’t got it yet.”
So coming into cybersecurity, it’s really
weird that this word resilience keeps

coming up within me. I worked for six
months on somewhere that goes, “No,”
but I didn’t throw my toys out of the
pram and go, “I’m quitting academia. I
didn’t get any results.” And I’m seeing
it in the people who surround me who
are successful—that resilience, the
ability to go, “Not yet. I haven’t got it
yet. I’m going to try something else.”

I think resilience in cybersecurity goes
hand in hand with creativity, because
you can’t keep doing the same thing
and expecting something different
to happen. But if you can go, “Oh,
what can I try creatively? I’m going to

try something else. Okay, that didn’t
work. What would be a different way
of approaching the problem?” So
for me, resilience is the single most
important thing you can have in
computer science and academia.

Lily Sturmann: I know you run a hacking
club in your area. I really wanted to ask
about it because it sounds awesome.

Kit Murdock: So it’s brilliant. I love it.
I did a master’s in cybersecurity and
I came along to it, and then I came
back and did my Ph.D. and now I and
the person who ran it before me,

Kit Murdock (fifth from left) leads a hacking
club at the University of Birmingham.

RESEARCH
QUARTERLY

V O L U M E 2 : 1

research.redhat.com 19

Andrea, run it together. She’s just finished her
Ph.D. We’ve got some of the undergraduates
to come and do occasional stuff and they help
us, but we’re the face of it, we’re the hacking
club. And we entered a national competition
maybe a couple of months ago. It was all online,
and they had a prize for the university hacking
club that had the most women that day out
of that competition, and we won that prize.

I really feel that having two women at the front
of it helps people walk through the door and
go, “Yes, this is for me.” I think it also matters
to me and Andrea because we are the only
two women in the cybersecurity department.
It matters to us that women feel included.
Have you heard of the Bechdel Test?

Lily Sturmann: Yes. It’s whether two women
in a movie talk to each other about something
that’s not a man. I’ve been keeping an eye on
that kind of stuff for a long time as well.

Kit Murdock: If you get something that’s vaguely
technical, the woman [in the film] tends to be the
slightly ditzy one who goes, “Oh, can you explain it
to me? I didn’t get it.” And so for me and Andrea, it
was really important that everyone walks through
the door and goes, “Okay, this can be for me.”

Lily Sturmann: Yeah, absolutely. It drives
me crazy when I see things like that, because
speaking of resilience, I think when people don’t
see themselves in a technical field, they’re
more likely to give up. And they’re more likely to
attribute it not to the fact that they haven’t tried
for long enough and instead just say, “Oh, I must
be secretly that ditzy person from those movies.
And I just didn’t know it yet.” It’s really sad.

Kit Murdock: So back to hacking club. For the
first term of each year, we do led sessions. We did

one on networking, we did one on wifi hacking,
we did one on reverse engineering, we did one
on website hacking. And then in the second
term we start actually using the skills. There is
a great website called Hack The Box, and we
attack those. And then we’d go to university
competitions, or we do CTFs that are on the
weekend. So there we’re a university team
competing against any CTF team in the world.
I think we’re the third-place British university.

Lily Sturmann: That sounds really fun.

Kit Murdock: I love it. I just went to a girls’
school a couple of weeks ago to do a careers
day. It’s really hard to explain how much fun
it is trying to solve a problem. Imagine you
have fun with crosswords or Sudoku. It’s
the same thing, and you get paid for it. This
could be your career to do and solve puzzles.
Why would you not want to do that?

You can find a link to Kit Murdock’s
Red Hat Research Day recorded talk at
research.redhat.com/research-day-brno/

Kit Murdock (right)
with her fellow
hacking club leader.
“I really feel that
having two women at
the front of it helps
people walk through
the door and go,
‘Yes, this is for me.’”

RH
RQ

V O L U M E 2 : 1

RESEARCH
QUARTERLY

research.redhat.com20

About the Author
After earning her

Computer Science
master’s degree from

Boston University,
Hema Veeradhi

joined the Red Hat AI
Center of Excellence

team as a software
engineer in the

office of the CTO,
where she explores

and integrates
open source AI

operations across
Red Hat platforms.

AlOps: Prometheus anomaly detection

Feature

Separating the signals from the noise in modern cloud
applications is becoming very difficult for human operators,
even those armed with experience and copious scripts. Here,
we describe a machine learning model to detect the anomalies
that matter—how to create it, and what to do next.
by Hema Veeradhi

With an increase in the number of
applications deployed on Kubernetes,
still a relatively new platform, there

is a strong need for application monitoring.
Most of these applications are monitored via
open source Prometheus metrics, resulting
in the accumulation of a large number of
time series metrics. Some of these metrics
are anomalous in nature, and it is difficult to
identify them manually. To address this issue,
we at Red Hat’s AI Center of Excellence (AI
CoE) came up with an AI-based approach
of training a machine learning model on
these metrics to help detect anomalies.

AIOps APPROACH AND
IMPLEMENTATION
With the increased amount of Prometheus
metrics flowing in, it is getting harder for
system operators and performance engineers
to see the signals within the noise. The current
state of the art is to graph out metrics on
dashboards and alert on thresholds, which
is currently done by domain knowledge,
i.e. the people that know the system.

Through an AI-based approach, we can train
machine learning models on historic metric

Figure 1. Anomaly detection process

data to perform time series forecasting. The
true metric values can then be compared
with the model predictions. If the predicted
value differs from the true metric value, we
can report this as anomalous behavior.

The current implementation of anomaly
detection (github.com/AICoE/prometheus-
anomaly-detector) within the Open Data
Hub project (opendatahub.io) running on
the Kubernetes-based Red Hat® OpenShift®
Container Platform is shown in Figure 1.

1.	Data: Prometheus time series metrics
scraped from specified hosts/targets

RESEARCH
QUARTERLY

V O L U M E 2 : 1

https://github.com/AICoE/prometheus-anomaly-detector
https://github.com/AICoE/prometheus-anomaly-detector
https://github.com/AICoE/prometheus-anomaly-detector
http://github.com/AICoE/prometheus-anomaly-detector
http://github.com/AICoE/prometheus-anomaly-detector
http://opendatahub.io
https://prometheus-dh-prod-monitoring.cloud.datahub.psi.redhat.com/
https://prometheus-dh-prod-monitoring.cloud.datahub.psi.redhat.com/
https://prometheus-dh-prod-monitoring.cloud.datahub.psi.redhat.com/

21research.redhat.com

2.	 Models being trained:
a. Fourier: Fourier is used to map
signals from the time domain to the
frequency domain. It represents
periodic time series data as a sum
of sinusoidal components (sine and
cosine).
b. Prophet: The Prophet (facebook.
github.io/prophet/) model was
developed by Facebook (and
contributed to open source) for
forecasting time series data. It is
based on an additive model where
non-linear trends are fit with yearly,
weekly, and daily seasonality,
plus holiday effects. Prophet
works best with time series that
have strong seasonal effects and
several seasons of historical data.
The following are the forecasted
values calculated by the model:

•	 yhat - Predicted time series value

•	 yhat_lower - Lower bound of
the uncertainty interval

•	 yhat_upper - Upper bound
of the uncertainty interval

3.	 Visualization: We can visualize
the time series metric behavior by
creating graphs in Grafana. Figure
2 shows how we can plot and
compare the actual and predicted
metric values on a dashboard.

This dashboard plots the current
metric value, predicted metric
value, upper and lower bounds
for the predicted value, and
the anomaly detected.

4.	 Alerting: The anomalies
detected are sent out as alerts
using Prometheus. The alerts are
configured to send automated
messages through a chatbot via
Google Chat and email, notifying
the respective teams. The Google
Chat alerting architecture is
maintained in two parts:

•	 The predicted metrics are
scraped by Prometheus running
in the Open Data Hub.

•	 Open Data Hub sends a webhook
trigger to team Thoth Bot Sesheta,
which is configured to trigger alert
notifications in Google chat.

The Prometheus instance can be
configured with alerting rules for the
anomaly detection metrics. Alerting
rules allow you to define alert conditions
based on expression using Prometheus
expression language and to send
notifications about firing alerts to an
external service. Whenever the alert
expression results in one or more vector
elements at a given point in time, the

Figure 3. Automated trigger for alerting rule

```

alert: Dgraph Read Failures 
Fourier Zero-0 (stage)

expr: (badger_disk_reads:rate1m_
Fourier{ae_source=”http://prometheus-
exporter-zero-0.thoth-dgraph-stage.
svc:8080/debug/prometheus_
metrics”,instance=”prometheus-
anomaly-detector-fourier.cloud.
paas.psi.redhat.com:80”,job=”Thoth 
Dgraph Anomaly Detector Fourier 
(stage)”,monitor=”datahub”,value_
type=”anomaly”}==1)

for: 10m

annotations:

     summary: “Dgraph Read Failures 
Fourier Zero-0 (stage)”

     severity: “MEDIUM”

```

Figure 2. Anomaly detection dashboard

alert counts as active for these elements’
label sets. Figure 3 is an example of how
an alerting rule can be used to trigger
the alerts on anomalies detected.

Here, the Dgraph badger disk read metric
with the label `value_type=”anomaly”`
is determined as anomalous if the value
is set to 1 or non-anomalous if it is 0.

USE CASE
Project Thoth (thoth-station.ninja/)
is part of the AI CoE’s AI-driven

V O L U M E 2 : 1

RESEARCH
QUARTERLY

https://facebook.github.io/prophet/
http://facebook.github.io/prophet/
http://facebook.github.io/prophet/
https://thoth-station.ninja/
https://thoth-station.ninja/
https://thoth-station.ninja/
http://thoth-station.ninja/

research.redhat.com22

directly with the filesystem. Instead, it relies
on Badger to read from and write to disk.
These metrics can be used for monitoring
the read and write to persistent storage.

Project Thoth wanted to have real-time as well as
future prediction of the read-write failure of the
database. For the future prediction, we needed
anomaly detection and action recommendations.

INSIGHTS AND OBSERVATIONS
The anomaly detection in the Thoth Dgraph metrics
was valid in the sense that whenever an anomaly
was predicted, it was observed that the Dgraph
database was indeed failing. When the system
detected an anomaly, the Thoth team received
email and Google chat notifications for each alert.

One of the incidents we discovered was the
host cluster being down, causing the Dgraph
read/write failures. During this downtime, the
Prometheus anomaly detection triggered
alerts for the Dgraph read/write failures,
as shown in Figure 5 (opposite page).

Figure 6 (opposite page) shows some notified
alerts sent to Thoth station Google Chat.

CONCLUSION
This method of anomaly detection was helpful
for Team Thoth for monitoring and maintaining
the Dgraph database instance. It was also helpful
in understanding the limitations and hardships of

DevSecOps efforts. Thoth is a recommendation
system for AI and machine learning applications
that uses popular open source machine learning
libraries like TensorFlow or PyTorch. Thoth stores
software stacks, observations, and information
about runtime and build time environments in a
graph database. Using the observations stored in
the knowledge graph, the Thoth adviser provides
recommendations on efficient software stacks
for the AI and machine learning applications.
Recommendations may include performance-
relevant information, CVEs, or other information
derived from build time observations.

One of the databases used by Project Thoth was
Dgraph. Dgraph (docs.dgraph.io/) is an open
source, scalable, distributed, highly available,
and fast graph database, designed from the
ground up to be run in production. Project

Thoth used Dgraph extensively, with all the
operations triggered on a per-second basis.
As the Dgraph database was an integral
part of the Project Thoth architecture,
monitoring it was critically important.

Dgraph was deployed on an OpenShift
instance where it used persistent storage to
commit the data and store it. We monitored
the read and write actions with Prometheus
metrics. The Dgraph Instance provides metrics
that follow Prometheus standards. It exposes
metrics via the /debug/vars endpoint in
JSON format and the /debug/prometheus_
metrics endpoint in Prometheus’s text-based
format. The Dgraph database doesn’t store
the metrics, and it only exposes the value of

the metrics at that instant. The Dgraph used by
team Thoth was deployed with the Prometheus
exporter to export the metrics of Dgraph.

The disk metrics track the disk activity of the
Dgraph process. Dgraph does not interact

Figure 4. Anomaly detection process

This method
of anomaly

detection was
helpful for

Team Thoth for
monitoring and
maintaining the

Dgraph database
instance.

RESEARCH
QUARTERLY

V O L U M E 2 : 1

https://docs.dgraph.io/
http://docs.dgraph.io/

research.redhat.com 23

Figure 5. Grafana dashboard: anomaly detection during cluster downtime

maintaining the Dgraph Instance on an OpenShift
cluster. From an AIOps perspective, we were
able to accurately alert on the anomalies without
any predetermined thresholds. Working with
the Thoth Dgraph metrics helped us improve
our existing machine learning models. It also
led us to consider different possibilities of
testing this framework for a wider range of data
sets, not limiting its use to a specific metric
type. Future work for the Prometheus anomaly
detection would be to apply the framework
to different platforms and use cases.

Acknowledgements:
Thanks to everyone who helped in any possible way.

Red Hat AIOps Team: Marcel Hild, Anand
Sanmukhani, Michael Clifford, Hema Veeradhi
Red Hat Thoth Team: Christoph Goern, Francesco
Murdaca, Frido Pokorny, Harshad Nalla
Red Hat Open Data Hub Team:
Alex Corvin, Maulik Shah Figure 6. Failure alerts triggered by anomaly detection

Dgraph zero Read
Failure based upon
Fourier Prediction

Dgraph alpha Write
Failure based upon
Prophet Prediction

Dgraph zero Write
Failure based upon
Fourier Prediction

RH
RQ

V O L U M E 2 : 1

RESEARCH
QUARTERLY

research.redhat.com24

About the Author
Ulrich Drepper leads

Red Hat’s research
and future vision on

artificial intelligence,
machine learning, and

hardware innovation.

Hardware is back

Feature

Dennard scaling is ending, and with it Moore’s “Law,” just at the
moment when large-scale statistical modeling is becoming critical
for research, government, and business. Architectural efficiency,
across processors, accelerators, memory, and networking, will be
the new driver of speed in computing.

by Ulrich Drepper

The software industry had a good run
for 20 or more years: computers got
faster every year while preserving

backward compatibility. Innovations in both
semiconductor technology and processor
architecture were large enough to encourage
buying a new computer every year or two.

This meant that developers
could create ever more
complex programs—and users
could demand solving ever
larger problems—without
waiting longer for completion
of the task. Processors
gained parallelism: first in
the micro-architecture, in
the form of SMP, and then
through multi-threading.
Memory sizes increased
many times over, and, as
a result, so did the size
of working sets that could
be handled without falling
back to storage devices. Life was great.

The shrinking process node sizes that drive
the advances of processor speed are harder

Figure 1. The flattening speedup curve

to develop after each step, and the gains are
smaller. It is still possible to use less power for
the same number of transistors, but the leakage
is significantly higher relative to the total power
needs. The node size is smaller, but some chip
structures—for reasons such as power density
and speed—cannot be arbitrarily shrunk. Dennard
scaling is coming to the end and with it big gains

in automatic performance,
which means that
speedups through careful
program optimization and
compiler optimizations
are now not negligible
anymore, compared to
hardware speedups.

NEW PROGRAM NEEDS
As if the flattening speedup
curve were not bad
enough, the world at large
started to pay attention
to statistical modeling.
The success of certain

Internet businesses forced organizations to pay
attention. The effective1 techniques require
enormous amounts of compute power, which
opened a gap between users’ requirements

RESEARCH
QUARTERLY

V O L U M E 2 : 1

25research.redhat.com

and what the existing hardware/
software ecosystem could provide.

With the emergence of machine
learning (ML)/AI/statistical learning,
the number of organizations that rely
on high-performance computing (HPC)
dramatically increased. One could
even argue that pretty much every
organization is now using HPC. What
once was the domain of specialized
organizations and institutions (e.g.,
university and national laboratories,
the oil and gas industry) suddenly
became everyone’s problem.

Organizations with experience in HPC
worked hard to become experts in
squeezing out performance from their
systems. They invested in specialized
hardware (e.g., for networking),
spent more on fast storage, and
employed personnel to get even
the hard-to-achieve speedups from
optimizing their program code.

This is no practical path for
the general public.

QUICK FIXES AND PROBLEMS
The computer industry has reacted to
the changing environment of hardware
reality and new compute demands.

One of the successful ML techniques,
neural networks (NN), to a large
extent relies on linear algebra. This
was fortuitous because linear algebra
accelerators in the form of 3D graphics
cards have existed for a long time.

Subsidized by gamers’ need for
better graphics, the technologies
were adapted for compute needs and
specialized software to ease writing
NN on these GPGPUs (general
purpose graphics processing units).
Some technology firms even go
beyond the graphics cards designs
and focus on the needs of NNs. These
technologies fulfill the compute needs
that are hard to satisfy with CPUs.

All is not peachy, though. Data sets
are large and have to be transported
in and out. The DRAM (Dynamic
Random Access Memory) of GPGPUs,
because of the extreme performance
requirements, is miniscule compared to
what is supported on a workstation or
server. This makes solving the problems
tricky, because it is necessary to couple
many machines with several GPGPUs
or other accelerators so that they can
efficiently exchange and update shared
data. Solving this efficiently requires
significant knowledge, energy, and time.
None of which are generally available.

The only realistic substitute for all this
is an inefficient solution: compensate
for duplicated or inefficient work and
communication by scaling horizontally.
This is made possible by the rise of
public clouds, which allow you to avoid
buying the large number of expensive
machines needed for the inefficient
compute by renting them instead. If
problems that require such treatment
are few and have to be solved right
away, this is likely the right path.

The only realistic substitute
for all this is an inefficient
solution: compensate for
duplicated or inefficient

work and communication by
scaling horizontally.

1 Effective because they do not require large amounts of curated data

V O L U M E 2 : 1

RESEARCH
QUARTERLY

26 research.redhat.com

But the number of ML and other
high-compute projects rises. Every
organization creates more and
more data every day. The advent
of 5G communication technologies
means that endpoint devices are no
longer limited by narrow channels
to datacenters. This raises the
expectation that one can get access to
expensive analysis and results at any
time and for many more problems.

The result is that renting the machines
might not be possible—and in many
cases, not economically viable. It is
necessary to compensate for at least
some of the increase in demand with
increasing efficiency, and this requires
drastic changes, both in hardware
and, as a result, in software as well.

MORE EFFICIENT TECHNOLOGIES
Forward-looking enterprises are at the
vanguard of using new technologies,
and they feel the pain. Through cloud
offerings, customers can at least fulfill
the needs of their organizations, but
this does not mean we in the software
industry can stand still. We want to
increase our customers’ efficiency
and therefore spend significant
resources to improve the compute
environment. The innovations on the
software side have been described
elsewhere. Here we will focus on
changes coming on the hardware front:
more fundamental changes, in more
significant areas, are coming than we’ve
seen in many years. Specifically:

•	 Improvements to processor
technologies

•	 More, better accelerators

•	 New memory and storage technologies

•	 More efficient and
performing networking

None of these changes can be done
transparently to the software while
achieving all of the potential speedups.
All organizations need to pay attention.

NEW CPU TECHNOLOGIES
Even though the automatic
improvements in CPU speed are
slowing, that does not mean that the
total compute power of a CPU is not
dramatically increasing. The last years
have shown significant improvements
in the technology to connect dies, and
CPU manufacturers are using these
technologies to create CPUs with large
numbers of cores and large amounts
of cache memory. Without this chiplet
technology such CPUs would be
prohibitively expensive due to the low
yield, but today there are processors
with 64 or more cores available.

Chiplets will also enable functionality
on the same CPU package that
requires different manufacturing and/
or design technologies. CPU cores
alongside large-scale GPGPUs (not
just small integrated graphics units)
are possible, just as with integrating
FPGA. This means better and faster
sharing of resources, such as memory,
between the different components.

Better connectivity to the outside
is also needed. The next revision of

T

One way forward is
to use reconfigurable

hardware, through
rewiring bigger

building blocks inside a
processor to model the

data flow of the problem
and avoid data at rest.

RESEARCH
QUARTERLY

V O L U M E 2 : 1

research.redhat.com 27

the standard protocols for communication with
devices has just started its way into available
machines (PCIe4), and the following revision,
which again doubles performance, is already
specified. More I/O devices, such as network
interfaces, make their way directly into the
CPU package or even onto the CPU die.

The instruction set of CPUs is optimized for
more specific workloads like NNs, which could
redraw the line beyond which it is worth offloading
compute tasks to specialized accelerators,
as opposed to keeping the NN computations
alongside the normal program code.

NEW, BETTER ACCELERATORS
Today, accelerators are dominated by linear
algebra engines in the form of GPGPUs or more
generalized chips (tensor engines). Numerous
large organizations and small startups try to
define the next ASIC that can accelerate more
computations better for less cost, and this
undoubtedly will lead to some improvements.

A problem is that much of the focus is on one
type of acceleration (linear algebra), because it
is easy to implement functions in hardware and
program them in software. But not all problems
can be solved efficiently using these technologies.
Not even all NN techniques can be accelerated at
the same level (see RNNs). More important still:
the state of the art and the users’ requirements
are not static, and changing ASICs is hard.

One way forward is to use reconfigurable
hardware. This could be done through rewiring
bigger building blocks inside a processor to model
the data flow of the problem and avoid data at rest.

Another way is to start out with small,
simple components and build a processor or
processing engine from the ground up. This is

possible with FPGAs, which have been in use
to solve problems unsolvable by normal CPUs
(e.g., in backbone routers) for decades.

Both of these possible technologies have in
common that the same work can be performed
more efficiently because only the gates needed
to solve the problem are actually powered.
Compare this with a general purpose CPU,
which has to deal with a lot more overhead
and the resulting inefficiency. The issue
of efficiency is even more severe for edge
devices, where power is more limited or the
device may even be battery powered.

The second main advantage is the inherent
parallelism of hardware in case there are no
dependencies. CPUs and GPGPUs can execute
as many independent tasks as there are cores/
hardware threads. Hardware like FPGAs is
only limited by the total number of logical
units (lookup tables [LUTs] in FPGAs), and
those number in the billions these days.

Accelerators are also better connected to the host,
each other, and other machines. GPGPUs that act
as PCIe masters can communicate directly with the
outside world without the involvement of the host.
They can communicate with high rates amongst
its kind within the machine, and advances in SR-
IOV implementations on the accelerator and host
side lead to disappearing boundaries between the
memory of the host and that of the accelerators.

As related to programming, it is possible to
transparently target from a program running
on the host any and all accelerators, depending
on availability and the specific working set.
Abstraction in programming and better support
in programming languages allow compilers
to generate efficient code not just for the
host. Runtime technologies make deployment

V O L U M E 2 : 1

RESEARCH
QUARTERLY

research.redhat.com28

simple even in heterogeneous compute
environments with different hardware throughout
the datacenter. Better tools for hardware
programming make it possible for software
developers to target reconfigurable hardware
and experience the same development cycle.

NEW MEMORY AND STORAGE
TECHNOLOGIES
The size of working sets has always been
growing, but with the increased use of ML
and its reliance on large amounts of data to
produce good models, the problem of fitting the
data onto a computer is getting more severe.
The size of the working set that can fit into
directly addressable memory has always been
a driving factor at the top end of computers.

DRAM technology steadily advances, with
doubling of the bandwidth and maximum module
capacity every few years. The access latency,
however, does not decrease as impressively as
that. More memory channels can lead to more
concurrency, but that would have to be exploited
by the program. Additionally, the fundamental
access sequence does not change, which means
that truly random accesses are slow because
they cannot take advantage of the CPU caches.

Investigations into technologies to
accelerate—for instance, using tables in
both row and column form at the same
time—are ongoing but not yet available.

When the amount of DRAM memory that has
to be available can be (severely) limited it is
possible to connect the DRAM to the processor
in a more efficient way: High-Bandwidth Memory
(HBM) used with GPGPUs connected to the
processor, using an interposer that directly
connects the dies. This allows many hundreds of
connections to be made from the HBM stack to

the processor as opposed to the 64 data lines
connecting a DDR memory module to the CPU.
The protocol can also be faster because of better
signal integrity, which leads to lower latency and
more throughput. But HBM is only available in
the package (for cost and heating reasons) in
amounts that are tiny compared to the amount of
memory that can be attached directly to a CPU.

Increasing the amount of DRAM attached to a
CPU is also limited by power/heat reasons as
well as how much memory can be reasonably
supported. The next best thing is to use a
different technology than DRAM that is more
energy efficient. Several such technologies have
been developed and deployed. The reduced
energy use requires that the memory is non-
volatile and requires no energy to keep its state.
Given that such memory costs less energy to
run, it can be many times larger than what is
realistic with DRAM, and combined with the
non-volatile nature this opens the opportunity
to use the extended RAM as storage. In fact,
most NVRAM solutions can be used as

•	 an extension of RAM by transparently using
the DRAM as cache for the random accesses
to the directly accessible NVRAM; or

•	 a fast storage device while continuing to use
DRAM as before, but now with the possibility
to swap in and out much more quickly the parts
of the working set that do not fit into DRAM.

The flash NVRAM technology, which has been
available for a long time now, is not suitable to
implement NVRAM. It is too slow and its lifetime
is too limited. Newer technologies such as Phase
Change Memory (PCM), Magnetoresistive
RAM (MRAM), and 3D XPoint are needed. The
good news is that those technologies can then,
cost allowing, be used for storage devices that

Even with
increased

capacities of
an individual

machine,
networking

will always be
a major factor
in a machine’s
performance.

RESEARCH
QUARTERLY

V O L U M E 2 : 1

29research.redhat.com

previously used flash. The resulting
improvements in read and write speed
are certainly welcome. In addition,
the connectivity of some of the
devices can be optimized. M.2 drives
are not accessed through the SATA
or SCSI protocol and a connected
controller but are instead connected
to PCIe lanes and can be directly
read by the CPU, further decreasing
latency and increasing throughput.

MORE EFFICIENT AND
PERFORMING NETWORKING
Even with increased capacities of an
individual machine, networking will
always be a major factor in a machine’s
performance. At the very least, data has
to be transferred in and out, often in a
time-sensitive manner. At other times
it is the throughput that is limited.

Individual network interfaces are getting
faster. While today many organizations
still have to make the jump from 1Gb/s
interfaces to 10Gb/s, even faster
versions with 50Gb/s or even 100Gb/s
are on the horizon. These speeds will

be necessary—especially if the number
of connecting devices is exploding
as expected with the adoption of
5G network technologies. If every
little device has a network interface
and wants to access services from
a provider, the latency for individual
requests will be a major factor.

Instead of just relying on efficient
handling of network traffic in the
traditional way (just faster), it will
in many situations be necessary to
break the abstraction of the network
stack. The implementation of SDN
controllers already bypasses the
OS kernel. This is just one of the
possible applications that can directly
consume large amounts of network
traffic and needs to handle it with low
latency. Trading applications or traffic
or industrial controllers are other
possibilities. In many cases the work
done for each request or data packet
received is minimal, and the overhead
of the transfer into the main memory
for consumption of the OS kernel or a
bypass network stack is prohibitive.

Intelligent NICs can help solve the
problem. If user-defined code can be
deployed onto devices connected to
the network and they can receive or
inspect incoming networking traffic (and
send out replies), no communication
outside the device has to happen. Such
technology exists in the form of FPGAs
that are deployed in the so-called Bump-
in-the-Wire (BitW) configuration. With
the addition of support for multi-tenancy
on the FPGA, it is possible to deploy
them in datacenters for general use.

CONCLUSION
The hardware environment is
stagnating in some areas (per-core
CPU performance), thriving in others
(5G networking), and it receives
different requirements from demanding
applications (ML). The result is that
hardware to be used in datacenters is
today changing more and in different
directions than in the last several years.
This is at once exciting and challenging,
requiring research and development
from Red Hat and from its partners
in both hardware and software. RH

RQ

V O L U M E 2 : 1

RESEARCH
QUARTERLY

research.redhat.com30

Faculty, Ph.D. students, and U.S. Red Hat associates in Israel are
collaborating actively on the following research projects. This quarter we
highlight collaborative projects at Technion–Israel Institute of Technology,
Tel Aviv University, and the Interdisciplinary Center Herzliya. We will
highlight research collaborations from other parts of the world in future
editions of the Research Quarterly. Contact academic@redhat.com for
more information on any project described here.

Research project updates

Project Updates

Researchers plan to build a scalable, real-
time cloud-based CEP engine capable of

efficiently detecting arbitrarily complex patterns
in high-volume data streams. The engine will be
implemented on top of Red Hat® OpenShift®
Container Platform and will be applicable to
any domain where event-based streaming data
is present. One goal of the project is creating
an open source project/community based on
the above engine. The researchers also hope
to advance the state of the art in the area
of complex event processing and combine
academic research with the implementation
and deployment of novel CEP mechanisms
and techniques in the above framework.

For more information, see Ilya Kolchinsky's
article, "Multi-pattern detection over

PROJECT: CEP (Complex
Event Processing)

ACADEMIC INVESTIGATORS:
Prof. Assaf Schuster (Technion)

RED HAT INVESTIGATORS:
Ilya Kolchinsky

streaming data" in Red Hat Research
Quarterly 1:4 (research.redhat.com).

PROJECT: Predictive Analysis-
Fault Tolerance

ACADEMIC INVESTIGATORS:
Massachusetts Open Cloud

RED HAT INVESTIGATORS:
Gagan Kumar (Boston)
Ilana Polonsky (Tel Aviv)
Parul Singh (Boston)
Shirly Radco (Tel Aviv)
Steven Rosenberg (Tel Aviv)

The goal of this project is to build an
algorithm that would utilize predictive

analysis technology to create a state-of-
the-art fault-tolerance system that can lead
toward the ability to “predict,” based upon past
events, if and when faults such as component
failures may occur. The target platform is the
Mass Open Cloud (massopen.cloud), a public-
cloud alternative for the academic research
community. (Joint work with Boston)

RESEARCH
QUARTERLY

V O L U M E 2 : 1

31research.redhat.com

PROJECT:
Electroencephalography
(EEG) Feature Extraction

ACADEMIC INVESTIGATORS:
Lubov Blumkin, M.D. (Sackler School
of Medicine, Tel Aviv University)

RED HAT INVESTIGATORS:
Boris Odnopozov

This research is meant to enable
improvement of the management

of patients with ESES.

Electrical status epilepticus during slow wave
sleep (ESES) is a rare age-related disorder
that appears in childhood, usually between
ages 4 and 9 years, and disappears by puberty.
The disorder is characterized by a combination
of multiple types of seizures and continuous
spike wave discharges during NREM sleep
on an EEG. The ESES syndrome may
present with frequent multiple type seizures,
although subclinical seizures may occur.

The treatment is aimed at controlling
the seizures and the epileptic activity in
order to prevent sequelae. Inappropriate
treatment may lead to persistent
neuropsychological sequela (language
capacity, intellectual level, memory,
behavior) as well as motor impairment.

The ESES disorder is usually resistant to
multiple antiepileptic drugs. Recurrent sleep
EEG study during therapeutic trials is needed
for detecting the efficacy of medications.
Currently this requires monitoring the child
during sleep at a sleep laboratory or EEG
institute using a full set of electrodes, which
is both an expensive and a burdensome

PROJECT: Ceph: Wire-Level
Compression-Efficient
Object Storage Daemon
Communication for the Cloud

ACADEMIC INVESTIGATORS:
Prof. Anat Bremler-Barr
Maya Gilad
(The Interdisciplinary Center Herzliya)

RED HAT INVESTIGATORS:
Josh Salomon

The project’s purpose is to reduce
storage network traffic (object, block,

etc.) for the following cases: between
the failure domains in cost-sensitive
environments such as public clouds,
and between nodes in cases where the
network bandwidth is the bottleneck
of the node performance. We have
divided the project into 3 milestones:
applying compression for data transfer
between different datacenters, enabling/
disabling compression given hints from
the client, and minimizing compression
efforts when data is non-compressible.

Find out more at research.redhat.com.

procedure. As a result, physicians do not have
feedback on the efficacy of the medications,
which makes the management ineffective.

Using Open Data Hub (opendatahub.io) as
the AI platform, we attempt to see if we can
detect ESES using only frontal electrodes.
This can allow much easier and more effective
home-based monitoring that will allow
practitioners to better administer the drugs
and make the treatment more effective.

RH
RQ

V O L U M E 2 : 1

RESEARCH
QUARTERLY

V O L U M E 2 : 1

RESEARCH
QUARTERLY

Learn more at ai.intel.com

© Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon and other Intel marks are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Copyright © Intel Corporation 2020.

	h.hntvrokgzy1j
	h.ceazwguxovvy
	h.e2r75am37mao
	h.ra9g7tg2fbpq
	h.ogcut4rclsnz
	h.h324pwx1zjt2
	h.sc9rad32ox7q
	h.1b6tryq0uvx5

