
Fog Function: Serverless Fog Computing
for Data Intensive IoT Services

Bin Cheng, Jonathan Fuerst, Gurkan Solmaz (NEC Labs Europe, Germany)
Takuya Sanada (NEC Solution Innovators, Ltd., Japan)

NEC Labs Europe

§ Located at Heidelberg, Germany, 1 hour away from Frankfurt by train

§ ~100 employees, 70~80 researchers, working in 4 major domains

§ We are involved in the research projects from both European Commission and
Internal business units

Agenda

§ Background
§ Motivation and gap analysis
§ Fog Function as a service for fog computing
§ Major design issues
§ System evaluation
§ Use case validation
§ Conclusion and future work

2

Agenda

§ Background
§ Motivation and gap analysis
§ Fog Function as a service for fog computing
§ Major design issues
§ System evaluation
§ Use case validation
§ Conclusion and future work

1

Background (1): Inter of Things (IoT)

§ Contextual data are constantly generated and to be used at edges

§ Many IoT services required the closed loop of sensing, analysing, decision-making,
and reacting; fast response time; automated workload management

§ Cloud-only based architecture is not enough to meet service requirements for IoT,
due to inefficient bandwidth consumption, latency limit, privacy concerns

3

Sensors Actuators

Processing

capture

Context
Information

Close the loop via data integration and analytics in between

Latency-sensitive
fast response time

Big scale,
Huge amount of data

Background (2): Serverless Computing

§ Function-as-a-Service: a simplified programming model to program your cloud
services

§ Auto-scaling: make the deployment automatic and transparent so that reducing the
operation cost

§ Cost model: pay-per-invocation, more reasonable than pay per VM

§ Decouple storage and computation and always move data to computation

4

“Cloud Programming Simplified: A Berkeley View on Serverless Computing“; https://arxiv.org/pdf/1902.03383.pdf

data Events

computation

Serverless function

Virtualizing the cloud

Always move data to computation;
limited efficiency

https://arxiv.org/pdf/1902.03383.pdf

Background (3): Edge Computing/Fog Computing

Cloud-edge infrastructure

huge cloud(s)
(public/private cloud)

light edge
(IoT device)

q Low end-to-end latency for latency
sensitive application

q low bandwidth consumption
q Better privacy-preserving

Technical benefits of edge/fog computing

heavy edge
(IoT Gateway)

Virtualizing the cloud and edges

5

Our Target

edge computing has great potential to reduce bandwidth consumption and end-to-end latency, but it
raises much more complexity than cloud computing since the cloud-edge environment is more open,

heterogeneous, and dynamic

Can we program applications over cloud-
edges easily, like programming them in

the cloud?

Can we let the cloud-edge platform to
automatically manage and optimize its own

resources under such dynamics?

Complicate to realize services due to lack of
programming model and poor interoperability:

spend months for each service

service/application
providers

No approach of dealing with dynamics like device
mobility, instant service usage, temporary failure:

applications have to face those issues

service realization
during the development phase

resource management
during the deployment phase

New IoT
services

New requirements
come frequently

6

State of the Art: device-oriented approach

edge edge

Orchestrator

Topic
-base

Actions for
A single edge

Topic-based

Cloud + each edge

EdgeX, Azure IoT Edge, AWS Greengrass

Cloud-broker

Device-oriented
deployment

Statically deployment;
Manually configured

data path;
Limited flexibility

7

Motivating Use Case

8

Public/Private Cloud

Edge Server A

Edge Server B

Metadata Visual Sensors Location State Camera URL MaintenanceCar Entity

Road Entity

Driving Behavior Analysis

GPS
sensor

Device
Layer

Edge
Layer

Cloud
Layer

Migration as the car moves

Camera

Real-time Traffic Estimation

Car Insurance Assessment

State Monitoring

New Functions

Road Damage Detection

Dangerous situation
detection

Use Case Analysis

9

O1

O2

O3

O4

O5

O6

G1

G2

G3

G4

observations gaps

Small vs. big entity

Static vs. dynamic entity

Small vs. big task

Short vs. long task

Normal vs. urgent task

Existing vs. new task

Data discovery and routing: from topic-
based to content- based

Function triggering: from per event to
per selected entities

Function execution: from data→code or
code→data to code↔data

Function composition: from event-oriented
or edge- oriented to data-centric

Our Approache to Fulfil the Gaps

10

G1

G2

G3

G4

Fog Function
Programming Model

Content-based Discovery

Data-driven
Function Orchestration

Context-aware
Task Deployment/Migration

gaps technology means

Data discovery and routing: from topic-
based to content- based

Function triggering: from per event to
per selected entities

Function execution: from data→code or
code→data to code↔data

Function composition: from event-oriented
or edge- oriented to data-centric

System Design

11

Service
Orchestrator

Content-base
Discovery

B

B

B

actions

��������

actions

�
�����	����

���������
�
����
�	����

�

Broker

�

�

�B Worker

B�

fog
node

fog
node

fog
node

fog
node

management
node

Content-based Discovery

Data-driven Orchestration

Context aware Optimization

Easy-to-use programming
model

Comparison

12

Systems FogFlow Others
(EdgeX, Azure IoT
Edge/AWS Greengrass)

Triggering-mechanism Content-based Topic-based

View for orchestration Global (all edges +
cloud)

Each edge + backup
broker in the cloud

Programming model(s) Data-oriented Device-oriented

Mobility support Yes No

Programming Model: Fog Function

13

Operator

Function annotation

13

Dynamic Service Composition

14

Operator
(e.g., Avg)

Docker images

Implementation of the operator

A B C
IntentService composition Intent

Intents

A single fog function or a group of fog functions

Execution plan

deployment plan

Graphical Editor to Programme IoT Services

15

Reusable
Functions

SubmitSelect

Your service is
ready in minutes

Triggered by an “Intent”

16

Context Information Management: Standard-based, NGSI

17

A B C

NGSI-based Context management system

Raw data
source

Analytics
results

IoT Service

input outputIntermedia
result

NGSI: Next Generation Service Interface

18

IoT
Broker

IoT
Discovery

Producer(s)

Provider(s)

Consumer(s)

Subscriber(s)

Data processing operator
NGSI9

(register)

NGSI9
(discover, query)

NGSI10

NGSI10
(subscribe)

NGSI9
(query,

subscribe)

NGSI10
(update)

NGSI10
(notify)

Data model for entities

Communication protocol like pub/sub

typeid attribute location Other metadata

Context Information Management: Two-layer & Distributed

19

IoT
Discovery

IoT
Broker

IoT
Broker

IoT
BrokerContext

producers

Context
consumers

update

NGSI9

NGSI9

NGSI9

subscribe/query

NGSI10

NGSI10

• �������	����� �������������
��
�
��
•
�����	��������������������
�
��

• ������
������������������
�
��
• ����
������
�����
�������������������
�
��

Data-driven Function Orchestration (1)

20

Data-driven Function Orchestration (2)

21

actions What to do

ADD_TASK To launch a new task with the given config- uration that
includes the initial setting of its input streams

REMOVE_TASK To terminate an existing running task with the given task ID

ADD_INPUT To subscribe to a new input stream on behalf of a running
task so that the new input stream can flow into the running
task

REMOVE_INPUT To unsubscribe from some existing input stream on behalf
of a running task so that the task stops receiving entity
updates from this input stream

Context-aware Task Migration

22

Cloud

Three types of use cases for task migration

Edge1 Edge2

t1

t1

Cloud

Edge1 Edge2

t1

t1

Cloud

Edge1 Edge2

t1t1

Cloud -> Edge Edge -> Cloud Edge -> Edge

FogFlow System

23

Topology
master

IoT
devices

Discovery

Applications

Task
designer

Service developers
System operators

FIWARE NGSI

Non-NGSI

Worker(s)Worker(s)

Docker
Registry

Data Processing Layer

Other
data source(s)

NGSINon-NGSI

Context Management Layer

IoT Device Layer

Broker(s)

Application Layer

Service Orchestration Layer

Open source, available at github https://github.com/smartfog/fogflow

https://github.com/smartfog/fogflow

Comparison with Cloud Function and Edge Function

24

Client Topic-based
broker

Execution
Environment

Cross-node traffic

latency

Client

Content-base
broker

latency
Execution

Environment
(fog node)

Content-base
broker

Execution
Environment

(fog node)

1) Cloud function

2) Edge function

3) Fog function

Separate data & computation

Dynamically
configured and
optimized, globally

Statically
configured
for each edge

Performance Evaluation

§ Latency

§ Scalability

§ Benefits as compared to the existing solutions

25

Evaluation Result (1): Startup Latency

26

Evaluation Result (2): Migration Latency

27

Evaluation Result (3): Scalability

28

Comparison Result

29

Cross-node traffic
(cost saving of bandwidth usage)

Service latency
(response time)

Cloud
Functionhigh

high

low

low

Edge
Function

Fog
Function

Use Case 1: Smart Parking

30

Connected
carprivate

site

Public
site

Real-time
estimation

Prediction

Arrival time
Estimation

Recommender

private parking site

public parking site entity

fog function

Use Case 2: Lost Child Finder

31

Face
matching

Virtual sensors
(cameras)

groupby “cameraID”

Subscribe

broadcast Picture of the
lost child

Stadium A Stadium B

Cloud

IoT
gateway

Terminal
gateway

IoT
gateway

Picture of
the lost child

Notifications
Terminal
gateway

Terminal
gateway

Terminal
gateway

Conclusion and future work

§ New programming model, namely Fog Function
• Function-as-a-service
• Hide all the details of how to manage the underlying infrastructure (cloud and edges)
• Data-centric

§ Efficient fog computing framework, namely FogFlow
• Utilize different context information: data locality, available resource, usage context

§ Various applications
• Smart cities, smart industry, public safety

§ Ongoing trend and future work: ICT infrastructure is becoming more distributed and
complex, but for service developers and operators, the infrastructure must be
transparent and intelligent:

• Controlling data processing flows dynamically to meet various requirements
• Automatically matching data providers and situation consumers
• Self-organized and optimized
• Making its usage easier and easier

32

Thank you!

33

