/_\ \Orchestrating a brighter world N Ec
— Flow—<

Fog Function: Serverless Fog Computing
for Data Intensive IoT Services

Bin Cheng, Jonathan Fuerst, Gurkan Solmaz (NEC Labs Europe, Germany)
Takuya Sanada (NEC Solution Innovators, Ltd., Japan)

NEC Labs Europe

= Located at Heidelberg, Germany, 1 hour away from Frankfurt by train

= ~100 employees, 70~80 researchers, working in 4 major domains

= We are involved in the research projects from both European Commission and
Internal business units

Data Science

Security

5G Networks

System Platforms for loT and Al

Agenda

Background

Motivation and gap analysis

Fog Function as a service for fog computing

Major design issues

System evaluation

Use case validation

Conclusion and future work

Background (1): Inter of Things (loT)

= Contextual data are constantly generated and to be used at edges

= Many loT services required the closed loop of sensing, analysing, decision-making,
and reacting; fast response time; automated workload management

= Cloud-only based architecture is not enough to meet service requirements for loT,
due to inefficient bandwidth consumption, latency limit, privacy concerns

Close the loop via data integration and analytics in between

Processing

Big scale, Context Latency-sensitive
Huge amount of data Information fast response time
[Sensors] [Actuators]
capture

Background (2): Serverless Computing

= Function-as-a-Service: a simplified programming model to program your cloud
services

= Auto-scaling: make the deployment automatic and transparent so that reducing the
operation cost

= Cost model: pay-per-invocation, more reasonable than pay per VM

= Decouple storage and computation and always move data to computation

Always move data to computation;
limited efficiency

computation

Serverless function

Virtualizing the cloud

“Cloud Programming Simplified: A Berkeley View on Serverless Computing”; https://arxiv.org/pdf/1902.03383.pdf

4

https://arxiv.org/pdf/1902.03383.pdf

huge cloud(s)
(public/private cloud

heavy edge
(loT Gateway)

light edge

(loT device)

Cloud-edge infrastructure

Cloud & Services

Data Upload/Download:
~ - WiFi
Raw data @ - Bluetooth

\\ -36

oA ©

/4 @

A Ao ‘A
-

A\‘

Virtualizing the cloud and edges

Background (3): Edge Computing/Fog Computing

Technical benefits of edge/fog computing

U Low end-to-end latency for latency
sensitive application

U low bandwidth consumption

Ul Better privacy-preserving

Our Target

edge computing has great potential to reduce bandwidth consumption and end-to-end latency, but it
raises much more complexity than cloud computing since the cloud-edge environment is more open,
heterogeneous, and dynamic

. - rvice realization resource management
sel;wce/appllcatlon service realizatio l

during the development phase during the deployment phase

providers
a [Complicate to realize services due to lack of No approach of dealing with dynamics like device
-- 0 o oo orn o o o
— programming model and poor interoperability: mobility, instant service usage, temporary failure:

New requirements
come frequently

1

services

spend months for each service applications have to face those issues

Can we program applications over cloud- Can we let the cloud-edge platform to

edges easily, like programming them in
the cloud?

automatically manage and optimize its own
resources under such dynamics?

State of the Art: device-oriented approach

[Orchestrator] Actions for
T r r A single edge deploymen
Cloud-broker gle &9 —
{ N
Topic-based u

Cloud + each edge

Statically deployment;
Manually configured
data path;
Limited flexibilit

l edge I

EdgeX, Azure IoT Edge, AWS Greengrass

Motivating Use

Case

New Functions

Cloud ! Car Insurance Assessment
Layer Public/Private Cloud
Road Entity
S v
Edge . T !
Real-time Traffic Estimation H
Layer ! S
e N Migration as the car moves Edge Server B
: 4---""77°"~ \
Edge Server A : e . e ;e .
' i State Monitoring | i Driving Behavior Analysis |
: TTTTTATR T b s f """""""""" :
Car Entity Metadata Visual Sensors | Location ! State Camera URL ' Maintenance
__________________ .
Dangerous situation !
detection !
R S
Device :
Layer .

sensor

Use Case Analysis

Small vs. big entity
Static vs. dynamic entity
Small vs. big task

Short vs. long task
Normal vs. urgent task

Existing vs. new task

observations gaps
D
02

03

o =D

05

06

o

Data discovery and routing: from topic-
based to content- based

Function triggering: from per event to
per selected entities

Function execution: from data->code or
code->data to codeé>data

Function composition: from event-oriented
or edge- oriented to data-centric

Our Approache to Fulfil the Gaps

gaps

Data discovery and routing: from topic-
based to content- based G1

Function triggering: from per event to G

technology means

Fog Function
Programming Model

O
S

per selected entities

Function execution: from data->code or
code->data to codeé>data

Function composition: from event-oriented
or edge- oriented to data-centric

00

10

Content-based Discovery

Data-driven
Function Orchestration

Context-aware
Task Deployment/Migration

System Design

—

actions usage context

-

11

Comparison

Systems Others
(EdgeX, Azure IoT
Edge/AWS Greengrass)

Triggering-mechanism Content-based Topic-based

View for orchestration Global (all edges + Each edge + backup

cloud) broker in the cloud
Programming model(s) Data-oriented Device-oriented
Mobility support Yes No

12

Programming Model: Fog Function

function (entity, publish, query, subscribe)

/Name: a unique 1dentity of the runction.

Operator: the name of a data processing operator. The op-
erator is implemented as a dockerized application based
on the interface of fog function described below. The
specified operator is instantiated at runtime by a Worker
as a task with its configured inputs and outputs. The task
is deployed in a dedicated Docker container running on
a fog node.

Inputs: a set of selected inputs required by the operator
to do internal data processing.

Outputs: the entity type generated by the operator.
Geoscope: the geoscope to be applied when selecting
input data for this fog function.

Priority: the priority of this fog function, which will be
taken into account by workers to decide how to assign
their limited resources to different functions at fog nodes.
SLO: the expected Service Level Objective, which is
defined as various optimization goals, for example, min-
imizing the latency to produce outputs, maximizing the
accuracy of generated results, or minimizing the band-
width usage across fog nodes. Different SLO leads to
different task deployment plans.

—

13

Operator

+

Function annotation

Selectedlype: the entity type of this selected input.
AttributeSet: the required attributes of the selected entity.
Constraints: the filters to further select input entities
based on some specific attribute values.

GroupBy: the granularity to control how many tasks
should be instantiated and how the selected input entities
should be assigned across its tasks. It can be defined as
“per entityID”, “per entityType”, or “per attributeValue”.
Scoped: this could be true or false and it is used to decide
whether geoscope should be applied to select input data
when the geoscope is defined with the fog function.

Dynamic Service Composition

deployment plan

Execution plan

A single fog function or a group of fog functions

Docker images

— Operator
(e.g., Avg)

Implementation of the operator

]

14

Graphical Editor to Programme loT Services

S e I e Ct FogFlow @ JlFog Funcion @ # S u b m |t
q editor to design a fog function

Function

Clean Board ~ Save Board JMEEIEEERRNIZINT]
Task

Conaton OX
key: type
Relation: = Annotator: (i} ¢
value: powerpsnel — ox rera—
cnaunl i o
SelectedAttributes: s! Javaseript (i} 4 Herited: true
Groupby: s Name: anomaly B matao
Reusable]
Code:
- Dockerlmage: nodeis
Functions B e
Canatton: [i D4 Sactor i D g
Key: type SelectedAtributes:
Relation: = Groupby: s
value: rule B conamons sizcr [
anon @

Your service is
ready in minutes

15

Triggered by an “Intent”

FogFlow @

Topology

TaskInstance

2% Service Topology @

to specify an intent object in order to run your service

Topology anomaly-detection e
Priority low]
Resource usage inclusive S
Objective None s
Geoscope custom 5
Polygon
| L#h
|
|
: LR £
® oRrit >
— ’ ram pER
AL 2
| — bin R 5 2 L
g =
po -] g St
- ams ‘ iR
1R85 WEST =] SHH
i 7
sgs HHET EEH x:u?
LN s R
RO BEE =en
mE®®] LR i
o Vi . RUD_pEe AP
R am whes TED
FrEH ans L
L T
3 1

AAER WHEHE
] f
1|‘.5E/ﬁiﬁ"t
o B
FEEH wE
AEN % 1 18
AL S ¢ (2
CEED

=y LG

Leaflet

16

Context Information Management: Standard-based, NGSI

Raw data

source

loT Service

input I

Intermedia
result

Analytics
results

output

NGSI-based Context management system

NGSI: Next Generation Service Interface

id type attribute location Other metadata Data model for entities

Communication protocol like pub/sub

Provider(s)

NGSI9

Data processing operator (register)

NGSI10
[Producer(s)] | (update)

NGSI10

|

|

|

| \

| | loT NGSI9 > loT

: : Broker (query, Discovery
: I subscribe)

1 { Consumer(s) NGSI10 NGSI10

| I (notify) ,

- (subscribe) NGSIO

(discover, query)

Subscriber(s)

18

Context Information Management: Two-layer & Distributed

« manage its local context entities
« provide a single view of all context entities

t*
NGSI10

Context Broker
producers

loT

update NGSI9

ey » manage the global context availability
Discovery « index the metadata of all entities

subscribe/query
Context

NGSllo consumers

19

Data-driven Function Orchestration (1)

fog function

Operartor

Outputs

Inputs 1) Submit Fog Function ! 5) Issue orchestration actions \

P - o

Orchestrator m

Worker(s)

Tasks

6) Processinginput data and

Discovery

Broker(s)

create/update entity

(NGSI9)

3) UPDATE, NGSI10

|oT Device(s)

20

Data-driven Function Orchestration (2)

ADD TASK To launch a new task with the given config- uration that
includes the initial setting of its input streams

REMOVE_TASK To terminate an existing running task with the given task ID

ADD _INPUT To subscribe to a new input stream on behalf of a running
task so that the new input stream can flow into the running
task

REMOVE_INPUT To unsubscribe from some existing input stream on behalf

of a running task so that the task stops receiving entity
updates from this input stream

21

Context-aware Task Migration

Edge2

Cloud -> Edge Edge -> Cloud Edge -> Edge

Three types of use cases for task migration

22

FogFlow System

i Service developers
System operators

Applications

t

Docker
Registry

FIWARE NGSI -

Non-NGSI

Open source, available at github https://github.com/smartfog/fogflow

Other
data source(s)

Non-NGSI

NGSI |

IoT
devices

Application Layer

Service Orchestration Layer

Context Management Layer

Data Processing Layer

IoT Device Layer

23

https://github.com/smartfog/fogflow

Comparison with Cloud Function and Edge Function

Cross-node traffic

A 4

Client Topic-based Execution

broker Environment

1) Cloud function

latency

Separate data & computation

v

Content-base
broker Dynamically

configured and

optimized, globally
3) Fog function

Content-base
broker

Client

Execution
Environment
(fog node)

Execution
latency Environment

(fog node) Statically

configured
for each edge

2) Edge function
24

Performance Evaluation

= Latency

= Scalability

= Benefits as compared to the existing solutions

25

Evaluation Result (1): Startup Latency

9000
8000
7000

"3 6000

£

= 5000
(&)
S 4000

2

® 3000
2000
1000

a) task-not-launched 8000
b) only-launch-task
c) fetch-image-and-launch-task
2615
d b c

different cases

26

Evaluation Result (2): Migration Latency

3000 d) terminate_task; e)start_task; f) migrate_task

2500 2300 2300

latency (ms)
&
8

23

d e f
different cases

27

Evaluation Result (3): Scalability

throughput
25,00
wv
~~ 20,00
v
4
v
£ 15,00
G
(@)
% 10,00
0
=
> 5,00
c
4 8

0,00
2
number of fog nodes

28

16

32

Comparison Result

Approaches cross-node traffic (MB) avg. service latency (ms)
small big small big

Cloud Function 86.6 987.3 262 610

Edge Function 3.5 10.8 68 150

Fog Function 3.8 11.4 59 102

Cross-node traffic

(cost saving of bandwidth usage)

A

high

low

Fog

unction

&

Service latency

low

29

high

L

(response time)

Use Case 1: Smart Parking

private parking site ﬂ

-y \ _

) e/
[leime / J
\1: Connected]

. car
private

site) Q T
\/

Recommender
@ X)
\

site

J

T public parking site D entity
/ Prediction /H a- :
E fog function

30

Use Case 2: Lost Child Finder

Cloud
IoT IoT
gateway gateway
‘/NY f . \ / \
Terminal otifica |ons Terminal Terminal Terminal
gateway ’ gateway gateway gateway
' W= i R & ’”‘ &
-p P|cture of
Stadium A A Stadium B the lost child

31

Subscribe

!

Face
matching

1

groupby “cameralD”

broadcast Picture of the

Virtual sensors
(cameras)

lost child
W0
|f : [.
il

Conclusion and future work

New programming model, namely Fog Function
* Function-as-a-service
» Hide all the details of how to manage the underlying infrastructure (cloud and edges)
» Data-centric

Efficient fog computing framework, namely FogFlow
« Ultilize different context information: data locality, available resource, usage context

Various applications
« Smart cities, smart industry, public safety

Ongoing trend and future work: ICT infrastructure is becoming more distributed and
complex, but for service developers and operators, the infrastructure must be
transparent and intelligent:

» Controlling data processing flows dynamically to meet various requirements

« Automatically matching data providers and situation consumers

+ Self-organized and optimized

« Making its usage easier and easier

32

33

Thank you!

\Orchestrating a brighter world

NEC

MBigDataStack

Holistic stack for big data applications and operations

The research leading to these results has
received funding from the European Community's
Horizon 2020 research and innovation programme
under grant agreement n°® 779747

