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1. Executive Summary 
The BigDataStack project was conceived as a data centric platform, integrating approaches 

for Data as a Service.  Its data services are covered in this work package and are naturally at 

the core of BigDataStack.    

This first deliverable of WP4 presents the architecture and the design of these data services. 

Most of the below are considered also to be standalone techniques that can be used 

separately. However, in the context of BigDataStack, they run on top of the data-driven 

infrastructure management system and provide the required data services. 

• Big Data Layout and data skipping (section 5) covers automated big data layout, as 

well as state of the art skipping techniques, in order to improve SQL analytics on 

rectangular data in object storage. A significant recent novel achievement includes 

data skipping for arbitrary SQL predicates (including AND/OR/NOT, User Defined 

Functions and built-in functions). This component also aims to research automatic 

algorithms for dynamic data layout and data skipping index creation, driven by 

analysis of the data properties and query history.  

• The adaptable distributed storage component (section 29)  which is based on the 

LeanXcale relational datastore and whose core achievement is to enhance its 

distributed storage engine to offer the following abilities which are beyond the 

current state-of-the-art: 

o dynamic reconfiguration of data regions to achieve optimal balance (done by 

fragmenting datasets and distributing them across the data nodes)  

o scaling in/out per as function of (lack of) resources availability.  

o Ensuring data consistency and transactional semantics but without causing: a) 

any downtime, b) any significant performance reduction, c) discarding any 

data modification operation 

• The Data Quality mechanisms (section 8), which offers domain-agnostic data 

cleaning, veracity and enhancement, while also checking for data source malfunction 

or performance deterioration.  

• The Predictive and Process Analytics component (section 9) strives, using 

multiple process mining algorithms, to analyse, structure and enhance 

process models derived from event driven data. The use of multiple 

algorithms on a given event log aims at maximizing the four evaluation 

metrics of process mining:  

o Replay fitness (ability to replay the log over the generated model) 

o Precision (not underfitting the log) 

o Generalization (not overfitting the log) 

o Simplicity 

• the Complex Event Processing (CEP) (section 10) which will run on geo-distributed 

environments in order to process the data as close to the source as possible to avoid 

delays in the processing and optimize resource consumption.  
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The seamless data analytics framework (section 7) builds on top of the LeanXcale database 

and IBM Cloud Object Storage, where the latter may be enhanced by an acceleration cache. 

This service can present to data scientists a single logical view for a dataset distributed across 

heterogeneous data stores (LeanXcale database and object storage). 

When combined, the aforementioned set of data services is powerful.  This is what we show 

in section 4 where we detail two common data scenarios:  a) data ingestion; b) data query.  

These two scenarios were chosen for the first iteration / phase of the project because of their 

importance. The goal is not only to show the strength of solutions built out of BigDataStack 

data services but also the ease with which they can be assembled.  

To this end, sub-section 4.2Error! Reference source not found.  also gives a roadmap of the 

data services development up to M18. 
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2. Introduction 

2.1. Relation to other deliverables 

This deliverable is related with a set of other project deliverables as described below: 

• D2.2 - Requirements & State of the Art Analysis II (M12). Collected requirements have 

been analysed to drive the design specifications of data services (top-down approach), 

while technical requirements from the data services have also been collected and 

analysed to provide input to other components of the overall architecture (bottom-

up approach). 

• D2.4 - Conceptual model and Reference architecture (M9) which is a high-level 

preview of the more detailed and advanced D4.1 which extends and details the 

relevant part of D2.4 

• D3.1 and D5.1 – respectively WP 3 and WP 5 Scientific Reports and Prototype 

Descriptions (M12). Alongside D4.1 Data as a Service, D3.1 and D5.1 present the 

current technical status, Data-driven infrastructure management and Dimensioning 

Modelling and Interaction services respectively, of the BigDataStack project. 

 
 

2.2. Document structure 

The structure of this deliverable follows the structure of the overall Data as a Service main 

building block: one section is dedicated to each one of the key components / mechanisms of 

the envisioned data services.  Since there are no real dependencies between the components, 

the order of these sections is not very significant. One exception is the seamless data analytics 

framework (section 7), which combines the capabilities of the LeanXcale data base (section 

6) as well as of the Big Data layout and data skipping (section 5) and which comes after both. 

Furthermore, two data analysis services are additionally offered in the context of the data 

services layer, the data cleaning (section 8) and the predictive and process analytics (section 

9). 

Prior to these sections, section 3 gives an overview of the various components / mechanisms 

that build up the overall data services block.  It is followed by section 4 that describes two Big 

Data use case scenarios which demonstrate how these data services can be combined to solve 

real problems. 
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3. Solution Architecture 

3.1. Vision 

 

BigDataStack provides a complete data-driven infrastructure, (see Figure 1Error! Reference 

source not found.. The envisioned BigDataStack platform capabilities could not be realized 

without a full stack that can facilitate the requirements of Big Data operations and 

applications. 

 

  

 

The "Data as a Service" layer is the cornerstone on which the four upper platform capabilities 

of BigDataStack rely. This layer offers a set of services that provide the building blocks of an 

efficient and modern data infrastructure covering all the major phases of data life cycle and 

usage, i.e., data ingestion, data storage and data analytics. 

 

Let us now present the main components / mechanisms of the Data as a Service layer along 

with the respective aforementioned basic capabilities: 

  

Data Quality Assessment & Improvement is an essential part to data ingestion as it offers 

domain-agnostic data cleaning and enhancement services and guarantees data veracity by 

providing a data-source health review. 

 

Big Data Layout and Data Skipping yields novel capabilities for SQL analytics on object storage. 

It will provide a pluggable data skipping engine with the ability to handle complex queries as 

well as User Defined Functions (UDF). These enhanced data skipping capabilities will be 

complemented by an online and offline data layout engine which takes into account data 

properties and query workload in order to enable efficient querying of data stored on object 

stores by maximizing the data skipping. 

 

Figure 1 - BigDataStack core platform capabilities (extracted from D2.1) 
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Distributed Storage is the first data storage approach of BigDataStack, it is based on the 

LeanXcale internal key value storage layer. This component will enhance the capabilities of 

this layer with: 

• data fragmentation of the stored datasets; 

• dynamic reconfiguration by splitting, merging and moving the data regions across the 

distributed data nodes in order to balance themselves against diverse loads (both in 

terms of incoming work and data load);  

• the elastic re-deployment of the storage that will be able to horizontally scale in/out 

to adapt to lack/surplus of resources. 

 

The second approach of BigDataStack is not Object Storage per se but rather new techniques 

to overcome the “data ingestion” problem that is typical of Object Storage1:  BigDataStack 

presents advances both in data layout (or data partitioning) and data skipping. These 

advances have the potential to greatly reduce the data ingestion problem. 

 

The Seamless Data Analytics Framework provides a novel storage component as it enables 

storing and querying data that lie both on transactional database (LeanXcale) and on the 

object store as a single logical data set. 

 

Predictive & Process Analytics: the two main scenarios of the Predictive & Process Analytics 

component are the discovery of insights and the prediction of future events in the context of 

process flows derived from event driven data. Process mining techniques will be utilized to 

extract knowledge from event logs which in turn will be transformed into insights and 

recommendations for the user in the Process Modelling phase of the project. 

 

Before we describe the CEP component,  

 

Real-time Complex Event Processing (CEP) is another essential part for data ingestion as it 

permits to process data being ingested to yield essential information (e.g., triggering of 

alarms, push notifications or alerts to end-users, etc).  This component gives the ability to 

process information on the fly before being stored. The CEP will run on distributed setups 

over the Wide Area Network (WAN), distributing queries so that communication overhead is 

minimized and also enabling early generation of alarms. The CEP will aggregate data as they 

are produced speeding up the analytical processing.  

 

   

3.2.  Platform Roles 

 

The following table lists the BigDataStack roles (as described in deliverable D2.1) that are 

relevant to the Data as a Service block. 

 

                                                
1 
https://www.researchgate.net/publication/317066213_Too_Big_to_Eat_Boosting_Analytics_Data_Ing
estion_from_Object_Stores_with_Scoop 
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Id Name Description 

ROL-01 Data Owner BigDataStack offers a unified Gateway to move (streaming) 

data from data owners into BigDataStack data stores layer, 

which support both SQL and NoSQL data stores. 

ROL-02 Data Scientist Data as a Service offers to the data scientists: 

a) data cleaning services  

b) Complex Event Processing, which can be applied on the 

data streaming in, both before and after it passes 

though the unified Gateway. 

c) the possibility to store the data as a single logical data 

set on both transactional data bases and object store. 

These data sets can seamlessly be queried. 

Table 2 – BigDataStack Platform roles 

 

 

3.3.  Design 

The set of data capabilities offered by the Data as a Service block are in fact mostly 

independent. As it will be presented in the following section 4, they may be naturally used 

together as required from several scenarios of data usage. However, the design of each 

component is quite component-centric and independent of other components / mechanisms. 

A first exception is for the seamless analytics framework, which takes the LeanXcale database 

and the object store and produces a new entity built upon these two first ones, permitting a) 

to define rules for automatic balancing of data sets between the two basic data storage 

components (e.g.,  data older than 3 months should be moved to the object store),  b) to 

define and use  a dataset which may be spread over these two data storage components 

seamlessly. 

A second exception is the synergy between the data cleaning component (see section 8) and 

the Real-time Complex Event Processing (CEP) (see section 10):  indeed, since data cleaning 

on-line processing is stateless, CEP happens to be a nice support for data cleaning which can 

benefit of all the CEP advantages. 

 

Typical Big Data processing starts from data acquisition at the edge and then goes through a 

pipeline as described in 
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where the extraction / cleaning may be performed at the edge or / and near the data store. 

Data as a Service offers data services that map to all these phases, but the last one 

(interpretation). 
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Figure 2 – Data as service components mapping to Big Data pipeline 

 

The CEP (section 10) distributes and parallelizes the queries to run in distributed setups. The 

operators of queries can be User Defined Functions (UDF), such as the data cleaning. In this 

sense the CEP can be used as an infrastructure for parallelizing UDFs.  

 

4. Implementation and Experimentation 

4.1. Experimental Setting 

This section introduces the use cases and scenarios to be supported in the incremental 

development of the solution. 

Data as a Service is designed to fit a broad scale of Big Data analytics use cases with 

demanding requirements. As a first step, the aim is to develop and test the various 

components of the overall Data as a Service block for the ship management use case (see 

deliverable D2.1 section 4.1). Indeed, the two main scenarios that are built around this use 

case will exercise most (if not all) of the capabilities of the Data as a Service components / 

mechanisms.   

As few general notes valid for this section and in fact this deliverable: 
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1. Our design and solution are agnostic of what exact object store we are using.  It could 

be the IBM COS object store2, as well as OpenStack Swift3,  or minio4, or Ceph5, etc. 

Therefore, in the following text we use with interchangeability “object store” or “IBM 

COS”.  The sole component which will demand a specific implementation of Object 

Storage is the seamless component (see section 7) which will contain the novel COS 

acceleration cache.  This component (the acceleration cache) is specific to COS. 

2. In term of distributed compute framework, we chose Apache Spark as distributed SQL 

engine for Big Data because of the following reasons: 

1. Among SQL engines available for Big Data (such as Presto), Apache Spark has 

biggest momentum (1400 contributors, Spark SQL alone has 450) 

2. Apache Spark has a very large user base 

3. ANSI SQL 2003 support: Spark SQL has the best ANSI SQL 2003 standard support 

among all Big Data SQL engines 

4. Apache Spark SQL supports complex and long running queries better than 

competition 

5. Apache Spark is best when it comes to extensibility and modularity 

6. Apache Spark beats competition in term of SQL query performance6 

 

We now will present the two use case scenarios that will be dealt during the first half of the 

project: first of all, we’ll discuss the ship management use case data ingestion path.  Figure 3 

– Data ingestion pathshows all the components that are involved in the ingestion path, which 

we will detail from the IoT data creation up to its upload in the object store. In the following 

description “[x]” will refer to the component with “x” label. 

So, the data consists of many Internet of Things (IoT) records (approximately 125 different 

attributes per minute, excluding meteorological and oceanographic data) that are collected 

from several on-board components and sensors, as follows: 

• The navigational system (latitude, longitude, wind speed and angle, speed over 

ground and speed through water); 

• The Alarm Monitoring System (main engine related attributes such as the rotations 

per minute and the torque of the main shaft, fuel oil inlet temperature and pressure, 

exhaust gas out temperature, etc.); 

• Key-Machinery components (fuel oil volume and temperature, etc). 

 

                                                
2 https://www.ibm.com/cloud/object-storage 
3 https://wiki.openstack.org/wiki/Swift 
4 https://www.minio.io/ 
5 https://ceph.com/ 
6 https://cdn2.hubspot.net/hubfs/488249/Asset%20PDFs/Benchmark_BI-on-
Hadoop_Performance_Q4_2016.pdf 
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We refer to the use case description (see deliverable D2.1 section 4.1) for details about the 

ship management use case. These many IoT records are gathered by what we call the “ship 

management on board application” [2] which outputs every minute a new row comprising 

the updated value for each of the sensors.  

These IoT data is fed twice to CEP components:  once on ship (to CEP1 [3]) and a second time 

after passing the gateway (to CEP2 [5]).  These two CEP components fulfil different goals. 

The IoT data rows are input to the CEP1 on ship component, which has for main goal to detect 

malfunctioning equipment, such as damaged sensors or recording equipment.  This detection 

is done thanks to a set of rules which, if they apply to the data prove that the IoT data is 

erroneous (e.g., the speed through water is zero but the rotations per minute of the main 

shaft is not).  Upon CEP1 processing completion, the IoT data is sent to the Gateway [4].  If 

data inconsistency is detected by CEP1, an alarm record is created and also sent to the 

Gateway [4]. 

The gateway [4] is the external accessible point of the BigDataStack analytics system and it 

receives both IoT data which it forwards to CEP2 [5] and the alarms which it forwards to the 

Alarms component [7].  The Alarms component gathers the alarms generated by CEP1 [3] and 

CEP2 [5]. The initial plan is to model it through OpenShift route which enables, under the 

same domain (i.e., same public IP and same URL, just different path), layer 7 load balancing 

of incoming requests. Therefore, making easy to differentiate the queries/request having to 

be redirected to CEP2 or to the Alarms component. If extra requirements arise, the plan is to 

move to the usage of service mesh (Istio7 in this case) and make use of the sidecar containers 

to handle the extra required actions and the Istio-gateway to redirect the traffic through the 

entry point, i.e., the Gateway. For more information about the gateway, check section 5 at 

Deliverable D3.1. 

CEP2 [5] has much more processing resources than CEP1 [3] so that it will process the 

incoming IoT data in ways that do not fit CEP1.  First of all, the basic data cleaning is running 

within CEP2. After data cleaning the IoT data undergoes additional checks and possible alarms 

are forwarded to the Alarms component [7]. 

IoT data output from CEP2 [5] is now ingested by the LeanXcale data base [8] which is a 

relational database that can sustain intensive operational workloads. Data is first stored into 

LeanXcale, which ensures consistency in terms of transactional semantics and can be scaled 

out accordingly to handle massive ingestions.   

The seamless section 7 details how historical data slices are moved from the LeanXcale 

database to the object store.  The data slices are pushed from the LeanXcale data base to a 

Kafka cluster [9], from which they are pulled by an Apache Spark1[12] application which might 

be based on Kafka Connect [10] (or alternatively Spark Streaming) which will create objects 

out of the data slices and upload them to the object store [13]. 

                                                
7 https://istio.io/ 
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Figure 3 – Data ingestion path 

 

The data query path (depicted in Figure 4 – Data Query Path) is based on the architecture 

detailed in the Seamless section 7.2 where the object store is on premise.  This is the query 

path that we plan to implement in the first iteration / phase of the project (planned for M18). 

 

  

Figure 4 – Data Query Path 

 

The seamless analytics component permits to access a data set that may be stored on both 

the LeanXcale data base and on object store as a single logical data set, that is without having 

to bother with location of data.   

The entry point of the seamless component is the LXS federator which federates the two 

underlying data stores. The component will be based on LeanXcale internal Query Engine that 

has polyglot capabilities and can join data coming from different sources, exploiting the 

concept of data lakes. We further refer the reader to sub-section 7.2 for details on how the 

seamless component design and possible usage. 
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As depicted in Figure 5 - Process and Predictive Analytics, the entire analytics flow takes 

advantage of the seamless analytics component illustrated above to gather information from 

both the LeanXcale distributed data base and IBM’s object store. The event data is processed 

through the Predictive and Process Analytics component (section 9) and information 

concerning the relationship among events is forwarded to other components, more precisely, 

the Process Modelling Framework part of WP5.   

 

Figure 5 - Process and Predictive Analytics 

 
 

4.2. Implementation Roadmap 

At the current stage of the project, initial prototypes have already been developed for several 

components. The following table section gives a roadmap for the various Data as a Service 

components that will need to be integrated for the mid-project integrated prototype.   

 

Table 3 – Implementation Roadmap 

 M12 M14 M16 M18 

On ship 

data 

simulator  

First version of 

real time 

simulator of 

ship 

management 

data 

Tentatively final 

version of simulator 

  

CEP1  First version  Integrated with 

data simulator 

includes alarm 

generation 

Full integration 

with gateway  

Fully working 

 

Gateway  First integration 

with simulated data 

Gateway 

dispatches 

stream (IoT) 

data 

Gateway 

dispatches 

stream (IoT) 
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data and 

alarms 

Deployment 

work 

First integration 

with data 

simulator 

Updated 

deployment of 

OpenShift cluster 

(improved 

performance) 

 

Fully working 

 

 

CEP2   First version not 

including cleaning 

CEP2 includes 

alarms and CEP2 

-> LeanXcale DB 

complete,  

Fully working 

 

Data 

Cleaning 

First standalone 

version 

Main path working Fully working 

and integrated 

 

LeanXcale Static 

deployment of 

LeanXcale data 

base and 

integration with 

Monitoring 

subcomponent 

Deployment of 

LeanXcale data 

base using 

Kubernetes that 

will allow to 

automatically 

deploy the 

datastore from the 

WP3 tools. 

LeanXcale data 

base Monitoring 

Proxy will be 

released 

Adaptable 

Storage Driver 

sub-component 

will be released 

to enable run-

time 

reconfiguration 

 

 

LeanXcale 

database to 

Kafka 

Definition of 

data schema for 

the ship 

management 

use case. 

Schema 

extension to 

include 

metadata 

needed for data 

movement 

from LeanXcale 

data base to 

IBM OS 

Definition of input 

expected from the 

IBM OS, LeanXcale 

data base will be 

able to send data to 

Kafka in the agreed 

format 

LeanXcale data 

base will send 

only historical 

data to IBM 

object store 

with respect to 

data 

consistency, and 

will not send 

modified 

operational data 

 

Kafka to 

object store 

  main path for 

data move from 

LeanXcale data 

base to object 

store (no 

Fully working 
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transactional 

behaviour) 

Spark & skip 

technology 

 Installed and 

connected to OS 

Offline data 

partitioning 

working 

Fully working 

 

Data 

Skipping 

and 

Advanced 

data Layout 

Definition of 

geospatial data 

skipping index. 

Mapping of 

geospatial UDF 

functions to 

geospatial data 

skipping index. 

Geospatial data 

layout of ship 

management 

data in object 

storage. 

Demonstration 

of data 

skipping and 

layout for 

geospatial 

queries on ship 

management 

data in object 

storage. 

Seamless 

federator 

Seamless 

federator will 

provide access 

only to 

LeanXcale data 

base (via the 

JBBC). No 

federation will 

IBM OS will take 

place 

Seamless federator 

integrated with 

Spark thru Thrift - 

Query main path 

thru federator is 

working. Federator 

do updates on 

LeanXcale data 

base, can retrieve 

data either from 

LeanXcale data 

base or IBM OS, but 

not from both 

First prototype 

of Seamless 

federator 

integrated and 

working against 

LeanXcale data 

base and Spark / 

OS.  

Experimentation 

on the 

performance 

and resource 

consumption 

Seamless 

federator fully 

integrated and 

working 

against 

LeanXcale data 

base and 

Spark/OS 

Test of 

JDBC/Spark 

if  

Spark Thrift 

server tested 

  Fully working 

 

Call-back OS 

-> LeanXcale 

data base  

 Definition of the 

protocol to be used 

for notifying the 

LeanXcale data 

base upon a 

successful ingestion 

of a data slice 

Integrated Fully working 

Predictive 

and Process 

Analytics 

First working 

stand–alone 

version 

Connection to 

Process Modelling 

Framework with 

generically made 

event log (First 

Recommendations) 

Connection with 

Global Event 

Tracker – 

Integrated 
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5. Big Data Layout and Data Skipping 

5.1. Requirements Specification 

We refer the reader to deliverable D2.1 section 8.10 (Big Data Layout) for: a) a description of 

the problem tackled by this module and b) a comprehensive review of the best practices. 

In order for this section to be self-contained, we reproduce here the basics of “data skipping” 

and “data layout”: 

 

Data Skipping is a technique to minimize the data that has to be read from object store to 

Compute Store.  This technique utilizes metadata to track information about objects and their 

dataset columns which can then be used for data skipping i.e. to show that an object is not 

relevant to a query and therefore does not need to be accessed from storage or sent on the 

network from Object Storage to Spark. To make the Data Skipping technology efficient, we 

index the metadata, so that during query execution, objects that are irrelevant to the query 

can be quickly filtered out from the list of objects to be retrieved for the query processing. 

This technique applies to all data formats and avoids touching irrelevant objects altogether 

(see IBM presentation8 at the Spark Summit).  

 

To get good Data Skipping one typically needs to pay attention to Data Layout. Data layout 

refers to all details regarding the storage of the data including object size, format, Hive style 

partitioning, and data partitioning, i.e. the assignment of data records to objects. We focus 

now on data partitioning. For any given query, we would like the records which satisfy the 

query to be grouped together in a small set of objects, so that the remaining objects can be 

skipped. In general, we need to partition the data so that it gives as much as possible data 

skipping for an incoming stream of queries (i.e. a workload), not just a single query. Note that 

the various queries may have conflicting requirements. Moreover, the workload changes over 

time, as does the data. In 2017, IBM Research independently developed the notion of k-d tree 

partitioning which uses query history to choose the partitioning columns and dataset medians 

as cutting points for partitioning. In parallel, a paper was published by an MIT team which 

used a similar approach and similarly applied it to Apache Spark for data skipping9. The work 

in this paper went beyond previous work by providing an adaptive approach to repartition 

datasets on the fly according to a cost model. This is a cutting-edge research area which is 

also promising in terms of its applicability to analytics on real world big datasets.  

 

This section undertakes further research in this area as well as apply it to a commercial setting. 

The following tables present the requirements that Big Data Layout and Data Skipping module 

should satisfy. Please refer to the footnotes for further clarifications.  

 

                                                
8 https://databricks.com/session/using-pluggable-apache-spark-sql-filters-to-help-gridpocket-users-
keep-up-with-the-jones-and-save-the-planet   
9 A. Shanbhag, A. Jindal, S. Madden, J. Quiane, and A. J. Elmore, “A robust partitioning scheme for 
ad-hoc query workloads,” SoCC, 2017. 
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Table 4 - requirement REQ-BDL-01 for Big Data Layout 

 Id10 Level of 

detail11 

Type12 Actor13 Priority14 

REQ-BDL-01 Software FUNC Developer MAN 

Name Support data skipping for arbitrary query predicates 

Description The query predicate could comprise UDFs and AND/OR/NOT. Example UDFs 

could be geospatial or temporal functions. 

Additional 

Information 

This functionality is important for the ship management use case, which 

requires geospatial UDFs. 

 
 

Table 5 - requirement REQ-BDL-02 for Big Data Layout 

 Id Level of detail Type Actor Priority 

REQ-BDL-02 Software FUNC Developer MAN 

Name Support a truly pluggable architecture for data skipping 

Description The goal of this requirement is to enable the addition of new data skipping 

index types without changing the core data skipping library. This is needed 

for requirement REQ-BDL-01 since supporting new UDFs may require new 

index types. 

Additional 

Information 
External users can also exploit this capability 

 

 

Table 6 - requirement REQ-BDL-03 for Big Data Layout 

 Id Level of detail Type Actor Priority 

REQ-BDL-03 Software FUNC Developer MAN 

Name Enable layout change for (part of) a dataset 

                                                
10Identifier: To be used in D2.2 to allow for the correct traceability of requirements. 

11Level of detail: Following the use of ISO/IEC/IEEE 29148:2011 (see section 2.1 Methodology), we use the 

following levels: Stakeholder, System and Software (i.e., technology details). 

12Type: Types of requirements are functional: FUNC (function), DATA (data); and non-functional: L&F (Look and 

Feel Requirements), USE (Usability Requirements), PERF (Performance Requirements), ENV 

(Operational/Environment Requirements), and SUP (Maintainability and Support Requirements).  

13Actor: It needs to be either one of the BigDataStack platform roles identified in section 3.2  or a system actor, 

e.g. another component or service. 

14Priority: Requirements can have different priorities: MAN (mandatory requirement), DES (desirable 

requirement), OPT (optional requirement), ENH (possible future enhancement). 
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Description There is a strong relationship between how a dataset is laid out in the object 

store and the performance of data skipping against this data set.  Moreover, 

this performance may be also very dependent on the queries. Hence the 

need to adapt the layout, not only for future data but also for heavily 

queried data already in object store. 

Additional 

Information 
 

 

 

Table 7 - requirement REQ-BDL-04 for Big Data Layout 

 Id Level of detail Type Actor Priority 

REQ-BDL-04 Software FUNC Developer MAN 

Name Enable on-line data layout 

Description Layout is critical for the data skipping performance.  As of now data is stored 

as is and possibly laid out again offline. The need is to upload dataset chunks 

with the best-known layout as data is ingested. 

Additional 

Information 
 

 

 

5.2. Design 

Our Data Skipping module allows skipping over objects which are not relevant to a query by 

using metadata which summarizes that data in one or more columns for the object. Currently 

we store this metadata in Elastic Search. Examples of data skipping metadata include storing 

minimum and maximum values for numeric types, or bounding boxes for geospatial data. Our 

code intercepts the SQL query execution flow in the phase where an object listing is created 

and pruned and adds an additional phase which further filters the list of objects by skipping 

over objects irrelevant to the query. See figure 6 which shows the regular Spark SQL query 

flow on the left, and our modified flow on the right.  
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Figure 6 - Spark SQL Query Execution Flow 

Our data skipping library code works with Apache Spark SQL but does not require any changes 

to core Spark. To do this we use the “Extra Optimizations” API of Catalyst, Spark’s optimizer. 

We add a special optimization rule which scans the logical plan tree and replaces the default 

InMemoryFileIndex with our enhanced IndexedCatalog, which extends the 

InMemoryFileIndex but further filters objects using Elastic Search as described above. 

The Data Skipping module allows creating data skipping indexes on datasets residing in the 

Object Storage, and subsequently exploiting these indexes to skip over objects irrelevant to a 

given SQL query. We made novel and significant extensions to the Data Skipping component 

by: 

1. Allowing users to define new data skipping indexes, without changing the core data 

skipping library; 

2. Supporting data skipping for arbitrary query predicates including UDFs and 

AND/OR/NOT operators. 

These two capacities are important and novel for different Big Data applications and 

operations, such as the ship management use case. 

The purpose of the Data Layout Manager component is to organize/partition the rows of a 

dataset as objects in the Object Storage in such a way that improves analytics performance, 

by reducing the number of bytes sent from the Object Storage to an analytics framework, 

such as the Apache Spark (the main KPI targeted by this component). This component is 

essentially a Spark application which works in two phases: 

1. The first phase analyses the dataset and builds a k-d-tree 
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2. The second phase uses partitions the dataset into objects according to the k-d-tree 

In our current implementation, the user specifies explicit commands to control the data 

layout, by specifying the columns to use for layout and their relative priorities. In future, we 

plan to collect query history and data statistics for specific use cases, and based on this, to 

automatically recommend a data layout and associated choice of data skipping indexes for 

that use case to enhance the effectiveness of data skipping. 

Data Layout can be performed on a dataset, which already exists in the Object Storage – we 

call this Offline Data Layout. Alternatively, Data Layout can be performed dynamically while 

data is ingested into Object Storage. We call this Online Data Layout.  

There are two main flows in which Data Skipping and Data Layout participate. In the ingestion 

flow, Online/Offline Data Layout is used to organize the dataset rows into objects, either on 

the fly or after the fact. Moreover, the Data Skipping module is used to create data skipping 

indexes which can be used by subsequent analytics. The parameters such as which columns 

to use for layout and skipping are currently provided by the user. In future, there will be a 

query logging component which records the query history, as well as a data logging 

component which records dataset properties and their change over time as new data are 

ingested. This information can then be used to recommend the above parameters. 

Figure 7 – Data Ingestion flowdepicts the various possibilities for the ingestion flow. Note that 

data is ingested from the LeanXcale data base via Kafka using a connector and uploaded to 

Object Storage.  

 

 

Figure 7 – Data Ingestion flow 

 

In the analytics flow, (see Figure 8 – Data Analytics flow) given a query, the metadata store 

(in which the generated meta-data is stored) is consulted in order to skip over irrelevant 

objects whenever possible. Note that here a given SQL query is submitted by the LeanXcale 

data base and reaches Spark via a JDBC interface. 
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Figure 8 – Data Analytics flow 

 

5.3. Early Prototype 

IBM Data Skipping and Data Layout modules have been extended in several significant ways 

for the benefit of BigDataStack. 

Both the Data Skipping and Data Layout code was extended to accurately measure bytes read 

from COS to Apache Spark. It is important to measure this accurately since it is the main KPI. 

This is done using the Spark Measure library from CERN15. Bytes read from COS is measured 

when creating data skipping indexes, and also when running queries against COS. Moreover, 

when running the Data Layout Manager, we measure both the bytes read number and the 

bytes written to COS number. Work measuring bytes written to COS accurately is currently in 

progress since it requires a change to the underlying Stocator16 driver. Note that previously 

we were only able to measure the total number of objects skipped by a query, and to 

aggregate the total sum of bytes skipped in those objects. However, these statistics are not 

helpful when data is stored in formats such as Parquet or ORC, because when accessing these 

formats Spark typically accesses only parts of the objects, for example, it only reads those 

columns accessed by the query. Our new method is able to measure the number of bytes 

actually read. We authored a blog on existing best practices for Big Data Layout for Spark SQL 

analytics on data in IBM Cloud Object Storage.17 

 

The Data Skipping module was extended to support arbitrary query predicates, including 

UDFs (user defined functions) and AND/OR/NOT. This is particularly challenging, because 

UDFs can be arbitrary functions about which the Spark optimizer knows very little. This work 

will be applied to geospatial UDFs, which are important for the ship management use case. 

See the next section to understand why this is needed. In addition, the Data Skipping code 

now supports a truly pluggable architecture, where new data skipping index types can be 

added without changing the core data skipping library. For example, we added a new 

                                                
15 https://github.com/LucaCanali/sparkMeasure 
16 https://github.com/CODAIT/stocator 
17 How to Layout Big Data in IBM Cloud Object Storage for Spark SQL 
https://www.ibm.com/blogs/bluemix/2018/06/big-data-layout/ 
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geospatial data skipping index type using this capability, which works well in conjunction with 

geospatial UDFs. External users can also exploit this capability. More technical details 

describing this work will appear in future.  

 

The Data Layout Manager has undergone a complete refactoring. It has also been updated to 

handle string data types as well as numeric data types. String data types behave differently 

from numeric data types since in most cases they are queried using ‘=’ or ‘IN’ predicates and 

not using inequality predicates. Therefore, our k-d-tree approach which splits the data 

according to the median value may not be ideal in this case. The k-d-tree approach was 

extended to support arbitrary cut nodes with unlimited number of children which enables 

each cut node to implement its own logic to decide how to split the data. We are 

experimenting with various alternatives of cut nodes, some of which take into account the 

number of distinct values in a column, and the number of appearances of each value. A key 

challenge is to do this efficiently. We also support sampling the input dataset when running 

the Data Layout Manager, which is important to achieve good performance.  

5.4. Use Case Mapping 

The ship management use case requires efficiently querying vessel (ship) trajectories and 

vessel engine data. The ship management use case also requires joining this data with 

weather data, to enable queries which combine both data sources. As described in section 7, 

this data will be stored across both the LeanXcale data base and Object Storage, where the 

bulk of the data stored long term will be in Object Storage. Therefore, an efficient method of 

organizing the data in Object Storage and querying it is required. 

Many of the queries required by the ship management use case are geospatial in nature. For 

example, the data scientists analysing the ship datasets might need to check whether there is 

a correlation between engine failures and a certain geospatial region. Moreover, joining the 

vessel data with weather data is geospatial in nature, because one needs to combine 

information about a ship with weather data from a similar location (and time). 

In order to query geospatial data effectively, geospatial library functions are needed, which 

take into account the curvature of the Earth as well as handling various coordinate 

representations. Such libraries are often not built in to a Big Data engine, but can be added 

dynamically, as is the case for Spark SQL. Once such a library is added, its functions can be 

registered as UDFs (user defined functions), and queries can refer to them. 

Optimizers such as Spark’s Catalyst optimizer are typically unable to make intelligent decisions 

regarding UDFs since they know nothing about them. Specifically, for queries involving Big 

Data on Object Storage, essential optimizations are to choose an effective layout of the data 

and to enable skipping as much data as possible when it is not relevant to a query.  This is 

critical, but challenging, when UDFs are involved. For example, consider the following query, 

where the ST_distance function computes the spatial distance between two points: 
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 // Registration of Spatial Functions, "spark" is the sparkSession: SqlGeometry.registerAll(spark) // We assume df, is the original dataframe  // and that it does *not * contain a column named "location" val locationDf = df.withColumn("location",toPointEG($"lat",$"long"))  val  targetLat =  someValue val targetLng = someValue val  targetRadius =  someValue  // We create a temp view named VESSEL_DATA locationDf.createOrReplaceTempView("VESSEL_DATA")  val query = "select vessel_id FROM VESSEL_DATA where    ST_Distance(location,ST_WKTToSQL('POINT(targetLat , targetLng )'))    <    targetRadius"  // and run the query: spark.sql(query) 
 

Data layout and skipping are essential here to reduce the amount of data read from the Object 

Storage and shipped across the network to the area surrounding Barcelona. However, without 

any knowledge of the ST_distance UDF in the Spark Catalyst optimizer this is not possible.  

In order to cater for the ship management use case, we will exploit the data layout and data 

skipping modules to handle cases where arbitrary query predicates including UDFs are 

involved. Moreover, we handle the case where data is multi-dimensional and data layout and 

skipping needs to take multiple dimensions (geospatial, time, and additional dimensions) into 

account.   

Note that UDFs can be useful for many use cases and are not specific to geospatial scenarios. 

Moreover, the requirement to handle multi-dimensional data applies to most use cases. 

  

5.5. Experimental Plan 

The main KPI which indicates successful data layout and data skipping is the number of bytes 

sent across the network from the Object Storage cluster to the Analytics cluster (in our case 

Apache Spark). A successful application of Data Skipping and Data Layout techniques will 

significantly reduce this KPI.  

An additional KPI which is also of some interest is the number of REST requests issued from 

Apache Spark to Object Storage. Each REST request incurs some overhead, so a smaller 

number is better. 
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In order to characterize the ship management workload, the following information is 

considered: 

1. dataset schema 

2. historical dataset 

3. Live updates to the dataset while the project is underway 

4. any existing data layout choices  

5. historical SQL query workload 

6. live SQL query workload – queries issued while the project is underway 

The above can be used to provide a benchmark for the ship management use case. For this 

benchmark we can run the given SQL query workload against the supplied dataset, using any 

chosen data layout and data skipping techniques, or without them, and measure/compare 

the above KPIs.  

 

5.6. Next Steps 

Next steps include applying our data skipping and layout technology to the ship management 

use case. This requires some focus on geospatial analytics and the use of external geospatial 

libraries.   

 

• Workload/benchmark:  

o Ingest the ship management dataset and the weather dataset to the Object 

Storage 

o Collect ship management SQL queries as benchmark 

• Identify a suitable library with geospatial functions for use with Spark 

• Apply data skipping for arbitrary query predicates to the ship management use case: 

o Handle AND/OR/NOT 

o Handle UDFs 

• Enable the Data Layout Manager to employ UDF functions 

• Apply the DataLayoutManager to the datasets above, and generate Data Skipping 

metadata 

• Complete work on accurately measuring bytes written to COS using the Data Layout 

Manager 

• Apply the workload/benchmark and compare with/without Data Layout and Data 

Skipping. 

6. Adaptable Distributed Storage  

6.1. Requirements Specification 

The adaptable distributed storage is a fully distributed storage layer relying on the data nodes 

of the LeanXcale relational datastore, and its main purpose is to be able to dynamically 

reconfigure both its resources and its data fragments in order to serve concurrently diverse 

workloads. For this goal, this component should be able to split the existing datasets in 
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different fragments, move them across the data nodes in order to reduce the resource 

consumption in nodes that are over-consuming the available resources and under-

performing, and request additional resources from the infrastructure, in order to scale out 

appropriately. As it has strong dependencies with the components of WP3, several 

requirements have been identified that both concern its internal functionality, as well as the 

interactions with these aforementioned components.  

 

The following tables present the initial list of those requirements, as identified during the first 

iteration of this deliverable, and they are categorized both as mandatory for the delivery of 

the prototype, while others can be considered optional at this phase of the project. 

 

Table 8 – requirement REQ-ADS-01 for Adaptable Distributed Storage 

 Id Level of detail Type Actor Priority 

REQ-ADS-01 System DATA Developer MAN 

Name Being able to fragment a dataset and move the data fragments across 

different nodes. 

Description The adaptable distributed storage should be able to split a dataset into 

different regions, and move these regions to different data nodes, in order 

to adapt in case of increased load (both in terms of user workload or data 

load) so as to achieve efficient consumption, based on the provided 

resources. 

Additional 

Information 
When a movement (move, split, join) of a data fragment occurs, the storage 

must not suffer from a down-time. On the contrary, it must remain 

operational with minimum overhead on the overall performance. 
 

Table 9 - requirement REQ-ADS-02 for Adaptable Distributed Storage 

 Id Level of detail Type Actor Priority 

REQ-ADS-02 System ENV Developer MAN 

Name Identify data nodes that are overprovisioning. 

Description The adaptable storage must be able to identify data nodes that are 

overprovisioning their available resources and send internal alerts to trigger 

a dynamic reconfiguration of the deployment of the data fragments. 

Additional 

Information 
 

 

Table 10 - requirement REQ-ADS-03 for Adaptable Distributed Storage 

 Id Level of detail Type Actor Priority 

REQ-ADS-03 System FUNC Developer DES 
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Name Solve the non-linear resource allocation problem to suggest alternative 

deployment of the data fragments. 

Description According to the available resources for the deployment of the data nodes 

and the stored data set, along with its split points that define data 

fragments, there is a non-linear resource allocation problem for the optimal 

deployment of the data fragments. 

Additional 

Information 
As a non-linear, the solution of the resource allocation problem requires 

exponential time to be solved, which is not acceptable for run-time 

requirements. The provided solution should take into account possible 

acceptable solutions that can solve the problem and improve the resource 

consumption, under a minimum time interval. 
 

Table 11 - requirement REQ-ADS-04 for Adaptable Distributed Storage 

 Id Level of detail Type Actor Priority 

REQ-ADS-04 System ENV Developer DES 

Name Be able to request additional resources from the infrastructure layer. 

Description In case of overprovisioning of the resources, the adaptable distributed 

storage should be able to request additional resources from the 

infrastructure of BigDataStack.  

Additional 

Information 
As noted in REQ-ADS-02, the adaptable storage must identify data nodes 

that are overprovisioning, and using REQ-ADS-03, it can suggest different 

distribution of the data fragments. However, there might be cases that this 

is not possible due to the overprovision of the whole system, and in such 

case, a horizontal scale out must take place. The adaptable storage should 

request additional resources, and grant them, if they are available. The 

communication should be as follows: 

1. The adaptable storage requests an additional node with the specific 

requirements for resources. 

2. The infrastructure responds if it can allocate additional resources for 

the storage. 

3. The infrastructure informs the storage that the additional resources 

are now available. 

This requirement also includes the need from the adaptable storage to 

inform the infrastructure that it can release resources that are not needed.   
 

 

Table 12 - requirement REQ-ADS-05 for Adaptable Distributed Storage 

 Id Level of detail Type Actor  Priority 

REQ-ADS-05 System ENV Developer OPT 

Name Being able to release resources and adapt if resources are deallocated from 

the infrastructure. 
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Description There might be cases where the whole infrastructure is overprovisioning 

there are no more resources to be allocated to tasks. Then, the 

infrastructure might decide to reduce the overall resources of specific 

components, in favour of others that might execute some critical 

operations, or they have biggest priority at that point. The adaptable 

storage engine should be listening to the infrastructure for such cases and 

adapt accordingly. 

Additional 

Information 
Once the adaptable distributed storage receives a request to release some 

of its nodes, then it should inform if it is capable of doing so: releasing some 

the data nodes, might result to not have the required amount of storage 

available for the dataset. In such cases, it should be responding that this is 

not permitted, as this would lead to data loss. In case that this is permitted, 

then it should re-distribute its data load, and inform the infrastructure that 

the node is ready to be released.  
 

 

Table 13 - requirement REQ-ADS-06 for Adaptable Distributed Storage 

 Id Level of detail Type Actor Priority 

REQ-ADS-06 System ENV Developer DES 

Name Inform the re-deployment component regarding reconfigurations of the 

data fragments. 

Description As it is up to the storage itself to decide its optimal configuration of its data 

load, the re-deployment component cannot be aware of possible 

reconfigurations, that might affect the overall deployment of an 

application. Therefore, the storage should inform the re-deployment 

component about these actions. 

Additional 

Information 
A message should be sent just before the re-configuration takes place, along 

with the setup, so that the re-deployment component can be notified and 

not take into account possible outliner monitoring information coming from 

this subcomponent. During this time, the re-deployment component should 

not modify any deployments that rely on the data set that is being re-

configured. When the reconfiguration is finished, the adaptable storage 

should notify the redeployment component again, in order for the latter to 

start looking on the new monitoring information and decide upon possible 

redeployment of existed applications as well. 
 

 

Table 14 - requirement REQ-ADS-07 for Adaptable Distributed Storage 

 Id Level of detail Type Actor Priority 

REQ-ADS-07 System ENV Developer MAN 
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Name Re-establish connectivity with the monitoring subcomponent when a 

horizontal scaling action takes place 

Description The adaptable storage engine exports its monitoring data to a specific place 

where the Prometheus, part of the monitoring subcomponent of 

BigDataStack can periodically pull and gather this information. Prometheus 

can be configured on where to pull this information upon its initialization. 

However, in cases of a runtime redeployment that takes place after a 

horizontal scaling action, information regarding the newly deployed nodes 

should also reach the monitoring component. 

Additional 

Information 
There should be a monitoring proxy of the adaptable storage that will take 

the responsibility to send monitoring information to the target component. 

This proxy should encapsulate the details of the underlying deployment. It 

should gather all information of the data nodes, reconfigure itself to take into 

account newly deployed data nodes, and send everything to the Prometheus. 

 

 

Table 15 - requirement REQ-ADS-08 for Adaptable Distributed Storage 

 Id Level of detail Type Actor Priority 

REQ-ADS-08 System ENV Developer MAN 

Name Enable a deployment of the data node component using Kubernetes 

Description As the infrastructure of BigDataStack uses Kubernetes for deploying the 

various application/platform components, the adaptable distributed engine 

must be able to deploy and configure additional data nodes via this 

technology. 

Additional 

Information 
 

 

 

6.2. Design 

Figure 9 - Adaptable Distributed Storage architectural designdepicts the main architectural 

pillars of the adaptable distributable storage, along with the main components of the project 

that interacts. The adaptable distributable storage consists of the adaptable storage driver, 

the reconfiguration engine and the elastic manager. It mainly interacts with the components 

of the infrastructure management system, from which it relies to deploy the data nodes of 

the storage, requests the allocation of additional resources, or gets informed to force the 

release of already available resources, pulls the monitoring information of the storage and 

informs the re-deployment component regarding new configurations. Moreover, the figure 

depicts some internal build-in components of the LeanXcale relational data store that are 

involved in the functionalities of the adaptable storage. Finally, it is important to note that 

LeanXcale relies on its own distributed key value store (KiVi) which is used to persistently 
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store data. KiVi consists of a metadata node, which contains all meta-information that 

describes the operational status of the storage, and various instances of data nodes. The key 

value store offers its own API for data access, allowing not only simple get/put operations, 

but also complex SQL-alike queries and aggregation operations. The metadata node of KiVi is 

part of the configuration component of LeanXcale, while on the other hand, each KiVi data 

node co-exists with an instance of the Query Engine, in order for the latter to exploit the 

locality of the data in each node. As a result, the LeanXcale datanodes consist of both a KiVi 

data instance, which contains a fragment of the dataset, along with a Query Engine instance. 

The adaptable storage will manage the scalability of the these data nodes. 

 

 

Figure 9 - Adaptable Distributed Storage architectural design 

 

The main purpose of the adaptable distributed storage is to efficiently manage the cluster of 

the underlying data nodes. The information regarding the nodes configuration is managed by 

the LeanXcale internal Configuration manager, which contains the metadata server of its 

internal storage engine. The tools that provide the basic pillars of the adaptable storage, 

which are the data fragmentation of the datasets, their split to different fragments, their join 

and movement across different data nodes, are included in the Adaptable Storage Driver. The 

latter provides utility methods to the upper layers that implement the business logic of this 

component, thus dynamically reconfigure the deployment of the data fragment, by 

splitting/merging/moving the existed datasets among the data nodes of the LeanXcale during 

the runtime and provide elasticity capabilities by scaling in/out the available resources of the 

storage when necessary. Its implementation is written in Java, and therefore, internally makes 
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use of JNI18 calls to allow this subcomponent to call the required bindings which are written 

in C and handle internally the details of the data movement. 

The reconfiguration engine implements the business logic regarding the steps and decisions 

that should be taken in order to maintain the efficient consumption of the available resources. 

It can understand hot spots, meaning data nodes that are overprovisioning their available 

resources. When it identifies such situations, and taken into account the overall available 

resources, it will ask its internal Resource Allocation Solver which is responsible for solving 

the corresponding non-linear problem. The latter suggests different configurations of the 

data fragments, and if this is possible, the Reconfiguration Engine executes all necessary 

steps.  

In case that the whole system is overprovisioning, and no alternative configurations can 

balance the system according to the available resources, the Reconfiguration Engine will 

request additional resources for the system from the Elastic Manager. The latter will ask from 

the tools of WP3, additional resources, and will reply back when these resources are available 

(or if the request was rejected), while on the other hand, will deploy the data node software 

elements to the new allocated resources. When this process completes, the Reconfiguration 

Engine consults again the Resource Allocation Solver in order to obtain the updated 

configurations, and once a new configuration is received, it drives a process to dynamically 

redistribute the fragments of the dataset, following the same flow as already described. It is 

important to note that the Elastic Manager can also receive requests from the infrastructure 

component of WP3, in order to release resources, dealing with cases that the whole 

BigDataStack platform is lacking resources and other tasks are more demanding or crucial. 

The Elastic Manager will reply if the storage can release some of its resources (i.e. the 

available storage should be bigger than the overall size of the datasets, otherwise it would 

lead to data loss), and if yes, it will force the Reconfiguration Engine to redistribute the load. 

Finally, the LeanXcale monitoring proxy can receive monitoring information from all the 

underlying data nodes, taken into account scenarios when a re-deployment takes place which 

leads to a horizontal scalability action. As additional data nodes are being deployed, the 

monitoring proxy takes into account all the connectivity details with the new nodes and will 

serve as the central point for pulling data from, by the monitoring subcomponent of WP3. 

During a dynamic reconfiguration, the Engine will inform the deployment component of WP3 

that such a process is taking place to prohibit any reconfiguration till it completes. 

 

 

6.3. Early Prototype 

The goal for M12 is to provide an early prototype deployed in the BigDataStack, so that it can 

be used by other components, in order to deliver a functional platform at this early phase of 

the project. Due to this, main focus will be given to enable a deployment of the data nodes of 

the storage, providing only static deployments at this phase. Moreover, the integration with 

the monitoring subcomponent will take place, so that it can receive monitoring information 

                                                
18 https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html 
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for the storage to be consumed by the relevant components. The following figure shows the 

dashboard showing monitoring information, after an initial integration with this component. 

 

Figure 10 - Grafana dashboard with monitoring information 

 

6.4. Use Case Mapping 

The ship management use case will be used as the main demonstrator to highlight the 

advantages and innovations of the tools developed. As described in the corresponding 

section, the ship fleet produces IoT data from numerous sensors deployed on each of its 

vessel. This data is pre-processed by different installations of CEP subsystems, cleaned and 

finally they arrive to the relational data store that has the responsibility to store them to the 

underlying Adaptable Distributed Storage component. The continuous data ingestion 

(hundreds of IoT data produced per minute by each of the vessels) might impose 

requirements for a significant amount of storage size, in order for this component to be able 

to store all the data. Moreover, the size of the required storage will be constantly increased, 

as new data are being ingested per minute. Due to this, the Adaptable Distributed Storage 

component should be automatically scaled out, by requesting additional data nodes from the 

infrastructure, when needed during the runtime. The provision of additional data nodes will 

cause its re-configuration engine to split, move and finally balance the ship management 

dataset among the available resources. This allows to dynamically increase data loads. 

Moreover, as described in the use case, data ingested to LeanXcale relational datastore will 

be periodically (e.g., after 3 months) transferred to the IBM object store, so that it can be later 

used for analytical queries over historical data. As mentioned in more details in the following 

section, IBM Object Store eventually imports this data and informs the LeanXcale data base 

about the successful ingestion. The LeanXcale data base can then safely discard this data from 

the storage As a result, the LeanXcale data base will periodically perform a vacuum process, 

which is resource consuming (in terms of memory and computation usage) but which frees 

storage resource. This might lead to under spending of the available resources, which are not 
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needed at that time, so the Adaptable Distributed Storage can request from the infrastructure 

to de-allocate the reserved resources.  

6.5. Experimental Plan 

An initial plan for experimentation taking into account three release iterations during the first 

phase of the project can be summarized as follows: 

1. A data movement operation should not downgrade the performance of the system 

for more than a specific threshold. 

2. The overall time to balance the system (reconfigure the data fragments) after an 

additional node is allocated should not exceed a maximum time interval. 

3. The responsiveness of the Resource Allocation Solver should be tested to validate if it 

increases linearly as function of the input size. 

6.6. Next Steps 

After having a deployment of the adaptable storage engine, and its integration with the 

monitoring subsystem of BigDataStack, the main focus will be given on its deployment using 

Kubernetes. This will allow for the platform to dynamically deploy this component, and the 

ability for the latter to be scaled in/out automatically. As mentioned in the corresponding 

subsection 8 (Triple Monitoring & QoS Evaluation) of D3.1, the current solution can be 

integrated with monitoring systems like Prometheus providing configuration information 

regarding static deployments. Therefore, in order to support a scenario when the dynamic 

load balancing and elastic redeployments take place, the LeanXcale data base monitoring 

proxy will be released, it will gather all available monitoring information of the data nodes 

and provide this to the BigDataStack platform. As a result, this subcomponent will act as the 

main point to pull the metrics so that they can be available to the platform. Finally, the data 

fragmentation of the datasets will be released by M16-M18, along with all the functionalities 

that will allow for the reconfiguration of the data fragments. These functionalities that are 

related with the REQ-ADS-01 requirement are the main pillars of the adaptable storage engine 

and will be used by the latter in all scenarios regarding reconfiguration and scalability of its 

resources. 

During the second phase of the project, the plan is to allow the dynamic reconfiguration of 

the data fragments and the redistribution of the data load after recognizing that a data node 

is overspending its resources. Towards this direction, the necessary mechanisms that will 

allow the storage engine to identify hot spots using the monitoring information internally will 

be released. Moreover, a basic solver of the resource allocation problem will be implemented 

that will allow the engine to decide at run-time for an improved deployment of the data 

fragments on top of the already allocated resources. This will allow the adaptable storage 

engine to be able to reconfigure its datasets dynamically, being able to adapt to diverse 

workloads, both in terms of storage and of resource requirements. Upon reconfiguration, the 

re-deployment component will be notified when such actions take place.  Regarding the 

elasticity and the ability of the storage to horizontally scale in/out at runtime, the focus will 

be also given in the second phase of the project. When a horizontal scaling action takes place, 

the system has to dynamically adapt, and redistribute its datasets to the new provided 

resources. In order to do so, all necessary tools coming from WP3 which are planned for M18 
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will be functional, as the elastic scalability of the resources would require from infrastructure 

to support this. 

 

7. Seamless Data Analytics Framework  

7.1. Requirements Specification 

 

Table 16 – requirement REQ-SDAF-01 for Seamless Data Analytics  

 Id Level of detail Type Actor Priority 

REQ-SDAF-01 Software FUNC Developer MAN 

Name Provide access to data stores via a single and common interface. 

Description BigDataStack includes two different data stores: the LeanXcale relational 

data store and IBM object store. The dataset can be fragmented and 

distributed over the two data stores (historic data being moved to object 

store). However, the application should be kept unaware of these internal 

data transfers. The application needs a common interface to submit queries, 

without having to specify where the data is stored. 

Additional 

Information 
A federation mechanism is required that will encapsulate the process of data 

retrieval from the two data stores. The LeanXcale access point will act as the 

federator between the relational and the Object Storage. The LeanXcale data 

base already provides a common JDBC interface for data connectivity. The 

federator will receive the query and execute it in both data stores. For the 

object store, the access would be via Spark SQL, which also provides a JDBC 

interface. The federator will take into consideration the operations that can 

be supported in order to push down the operations accordingly. Regarding 

the relational store, all operations will be pushed down to the store. At the 

very end, the federator will merge the results and return back the result set. 

It shouldn’t count data that appears in both data stores twice. 
 

Table 17 - requirement REQ-SDAF-02 for Seamless Data Analytics  

 Id Level of detail Type Actor Priority 

REQ-SDAF-02 System DATA Developer MAN 

Name Move historical data from the relational data store to the object store. 

Description Data ingested by the use cases will be stored into the relational datastore, 

as they are operational, in order to ensure data consistency in terms of ACID 

properties. After a configurable period of time, called the freshness window 

(which depends on the data set), the data becomes outdated and is no 

longer used by operational workloads. However, this historical data is still 
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valuable and can be exploited by Big Data analytics algorithms. This data 

should be moved from the LeanXcale data base to the IBM object store. 

Additional 

Information 
The LeanXcale data base provides a mechanism that allows to periodically 

produce a dumb snapshot of the modified data. This information will be 

transformed accordingly and will be pushed to an Apache Kafka queue. A 

Kafka based connector will, periodically pull this information and import the 

historical data to the object store. 
 

Table 18 - requirement REQ-SDAF-03 for Seamless Data Analytics  

 Id Level of detail Type Actor Priority 

REQ-SDAF-03 Software DATA Developer MAN 

Name Inform the LeanXcale data store when data are imported to the object store. 

Description When data are pushed to the Apache Kafka queue, the LeanXcale data base 

can drop them. However, due to the asynchronous design, the LeanXcale 

data base cannot know when the data has been made available to the 

object store. As a result, the object store must inform the LeanXcale data 

base regarding the successful insertion of the data, so that the LeanXcale 

data base can safely drop these data. 

Additional 

Information 
One possible solution to deal with this requirement will be the introduction 

of marking the data to be transferred to the object store by additional 

timestamps. Data that is being flushed and exported to the Kafka queue can 

be marked that way, so that later on, the object store can inform the 

LeanXcale data base that this bunch of data has been successfully imported. 

By doing so, the federator component can push down operations 

accordingly, and only request specific data from the underlying data stores. 

Data that are known to the LeanXcale data base that has been previously 

uploaded to the object store, will not be retrieved by the federator and can 

be safely discarded by the vacuum process of the LeanXcale data base. 
 

Table 19 - requirement REQ-SDAF-04 for Seamless Data Analytics  

 Id Level of detail Type Actor Priority 

REQ-SDAF-04 Software DATA Developer OPT 

Name Optimize query execution 

Description The federator receives a query and executes it into the different stores. The 

federator will be based on the LeanXcale query engine. The latter provides a 

query optimizer, which allows it to examine the different execution plans that 

can be produced in order to execute a query. However, it has been 

implemented to evaluate plans to be executed locally. It should be extended 

in order to take into consideration the operations that can be pushed down 

to the object store, and whether or not it is worth for an operator to be 
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pushed down, according to the response time of the execution from Spark 

SQL, the amount of data that will be retrieved to the federator etc.  

Additional 

Information 
 

 

Table 20 - requirement REQ-SDAF-05 for Seamless Data Analytics  

 Id Level of detail Type Actor Priority 

REQ-SDAF-05 Software DATA Developer OPT 

Name Optimize access to Object Storage. 

Description In order to perform analytics efficiently on Object Storage, a client-side 

caching/acceleration layer is needed. This is critical for a hybrid cloud 

scenario, where some of the customer data is on premise (potentially the 

LeanXcale data base and Spark) and some is in the cloud (potentially IBM 

COS). In such a scenario, when performing analytics, data needs to move 

from COS to Spark across the WAN, therefore minimizing the amount of data 

movement when part of the data is retrieved multiple times is of utmost 

importance.  

A similar scenario involves multi-cloud, where a dataset may be distributed 

among more than one cloud, also requiring data transfer across the WAN 

for the purposes of analytics. 

  

Additional 

Information 
This complements data skipping and data layout techniques to further 

reduce the KPI measuring the number of bytes sent from Object Storage to 

Spark. 
 

7.2. Design 

Figure 11 - Federation of the two data stores in the scope of the Seamless Data Analytical 

Frameworkshows the main architectural subcomponents of the Seamless Data Analytical 

Framework, from an application perspective. This framework can be considered as a black 

box from an application point of view, which includes two distinct data stores of a different 

type and purpose: LeanXcale relational data store that can serve write-intensive operational 

workloads, ensuring transactional semantics, and IBM object store that can execute heavily 

analytical queries on huge datasets requiring petabytes of storage. Data can either exist on 

the LeanXcale data base, or the object store, or co-exist in both. As a result, data can be 

fragmented across the data stores, however, from an application point of view this must be 

totally encapsulated by the framework itself.   

 



 
 Project No 779747 (BigDataStack) 

 D4.1 WP4 Scientific Report and Prototype Description - Y1 

 Date: 29.11.2018 

 Dissemination Level: PU 

 

 page 41 of 61 bigdatastack.eu 

  

Figure 11 - Federation of the two data stores in the scope of the Seamless Data Analytical 

Framework 

The federation between the two data stores will be based on LeanXcale internal Query Engine 

that has polyglot capabilities and can join data coming from different sources, exploiting the 

concept of data lakes. Having LeanXcale Query Engine (QE in the following) as the federator 

of the framework, it will address the REQ-SDAF-01 requirement: Data connectivity with the 

federator will be made via the JDBC implementation, thus providing a common way for all use 

cases and platform components to commonly access both stores in all cases. Regarding the 

data modification operations, they will be directly forwarded to LeanXcale relational data 

store to be executed. However, data retrieval operations have to involve both stores, as data 

can be stored to any of those (or both). In order to retrieve data from the LeanXcale data 

base, the QE gets the requests from JDBC and executes the query in its distributed storage. 

Exploiting its capabilities for intra-query parallelism and the ability of its key-value storage to 

accept push downs and execute locally various operations, the query engine splits the 

execution and distributes it in parallel, by pushing down the majority of operations, and then, 

it merges the intermediate results and returns them back to the user. The LeanXcale QE can 

push down simple selections and aggregation operators. Constructing the results for the 

latter take into account the following: the sum/count operations can accumulate the 

intermediate results, the max operation will require a logical operation to keep the maximum 

value across the nodes per granular row, and the average operation can be split to sum 

divided by count. Therefore, the LeanXcale Query Engine can be distributed across various 

nodes and uses a random instance to coordinate the distributed execution. In the case of the 

IBM object store, the latter is integrated with Spark, which can be used on top to provide 

additional query capabilities. Moreover, Spark provides a JDBC interface to enable data 

connectivity. Thus, by exploiting the polyglot capabilities of the LeanXcale data base, its Query 
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Engine can be used to push down operations both to the LeanXcale data base and to Spark, 

via the JDBC, and merge the intermediate results as previously described.  

Figure 12  - LeanXcale data base to IBM Object Storage pipeline for historical datashows the 

pipeline designed to move historical data from the LeanXcale relational data store to the IBM 

object store. The LeanXcale data base periodically exports a dump of the latest updates, which 

now fall outside the freshness window (depicted in the diagram as cold data slices). It 

transforms it to the common agreed format and push this information to a Kafka queue. A 

Kafka based connector, on the other hand, periodically pulls information from the queue, and 

injects this data into the object store. As a result, eventually the data exported by the 

LeanXcale data base is now available in the latter. After the successful ingestion of the 

historical data, the LeanXcale data base needs to be informed that the data has been persisted 

in the object store, so that it can be discarded from the relational database.  

 

Figure 12  - LeanXcale data base to IBM Object Storage pipeline for historical data 

 

 

7.2.1. Object Storage Acceleration Layer 

The COS Acceleration Layer is a client-side gateway to IBM COS, based on flash storage. 

Applications access this layer in the same way they would access COS itself, via an S3 API. 

When an application retrieves data, the layer is responsible for reading data from a remote 

instance of COS and caching the data locally in flash storage, while also returning the data to 

the application. The layer evicts data from the cache according to some cache replacement 

algorithm. Figure 13 - COS Acceleration Layerdepicts the proposed architecture of this 

feature.  

The API to access this layer is at the Object Storage level, therefore this layer is general 

purpose and all applications that require Object Storage can be supported. However, in the 

case of BigDataStack, the data stored in Object Storage will typically be rectangular data, and 

the workload will typically be SQL queries over that data. For this scenario, more information 

is known about the workload which can potentially provide hints to the caching layer to pre-

fetch data which is about to be read, retain in cache data which is likely to be read again in 

the near future, or discard data from cache which is unlikely to be read in the near future.  

This feature complements the data skipping and data layout technologies described in section 

5. Moreover, we expect high synergy between these topics. For example, data skipping 

metadata could be extended to contain information about which objects are accessed most 

frequently, which would help make caching decisions. In addition, for the purposes of data 
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skipping we currently intercept Spark SQL queries at the place where the list of objects to be 

retrieved is assembled and filtered. At this point we may have an opportunity to prefetch data 

to the caching layer if desired. Moreover, if data skipping metadata is itself stored in COS, 

then the caching layer could prioritize its caching above other data in COS, and this would 

enable efficient access to metadata for data skipping.  Finally, when the Data Layout Manager 

is used, this can potentially enhance cache efficiency, since the object layout will more closely 

match the queries used – i.e. the rows retrieved by a query will likely be spread across less 

objects. 

 

 

 

 

Figure 13 - COS Acceleration Layer 

7.3. Early Prototype 

As an early prototype in M12, the main goal is to provide a functional prototype, so that all 

components that need to retrieve data from both stores, should be able to do it. Towards this 

direction, the deployment of both datastores will be ready, along with an early 

implementation of the data federator. The latter provides a JDBC implementation, which is a 

well-known standard that enables data connection with a database system. As a result, all 

components that will need to retrieve data will have to use the JDBC driver provided by the 

LeanXcale data base. The federator should be able to retrieve data that resides in two 

different stores. However, in M12, data would be retrieved only from LeanXcale relational 

datastores. In parallel, a study towards the ability to connect to Spark via JDBC and its 

capabilities in terms of supported operations will be conducted, so that its results can be used 

during the integration of the federator with IBM object store at the latter phase. Finally, the 

definition of the data schema to be used for the ship management use case will be released, 

along with its necessary extensions to include metadata needed for the movement of the 

historical data from the LeanXcale data base to IBM object store. 
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7.4. Use Case Mapping 

The Seamless Data Analytical Framework is based on two main pillars: The Federator 

mechanism which lies on top of the two involved data stores and it is the central point of 

access to the data of the platform, and the deployed pipeline that is being used for 

transferring historical information from the LeanXcale relational data store to IBM object 

store. Regarding the latter, the ship management use case, as described in the previous 

section, will be mainly used to validate its functionality. This use case produces IoT data 

coming from various sensors deployed on its fleet, which are ingested in the store as a per-

minute basis. This information can be considered historical after a certain point in time, and 

will be transferred to the object store, through this pipeline.  

Regarding the federator, as the main access point to the data stored in the platform, it will be 

used by all components of BigDataStack that require the storing or retrieval of data: the 

integral components of the platform (i.e. data toolkit, and other WP5 tools, the cleaning 

process and the CEP engine of Data as a Service block etc.) and the use case applications. 

When it comes to update operations, the federator will push down these operations directly 

to the LeanXcale relational data store that ensures transactional semantics. When it comes 

to read operations, it will push down the queries both the LeanXcale data store and IBM 

object Store and will merge the intermediate results, filtering out possible records that co-

exist in both stores. 

7.5. Experimental Plan 

The plan for experimentation can be summarized as follows: 

1. The overhead of the federator in terms of latency should be zero, when requesting 

data that are stored in the LeanXcale data store only. 

2. The overhead of the federator in terms of latency should be zero, when requesting 

data that are stored in the object store only. 

3. The overhead of the federator in terms of latency should be less than defined value 

when joining data coming from both data stores. 

4. The responsiveness of the framework should be the same when executing heavy 

analytical queries, while at the same time, the LeanXcale data store exports the 

historical data and pushes them to the Apache Kafka Queue. 

5. The responsiveness of the framework should be the same when the LeanXcale data 

store exports the historical data under heavy operational workloads coming from the 

IoT data ingestion that happens in parallel. 

6. The framework can handle Big Data analytics, when the result is of a significant size. 

 

 

7.6. Next Steps 
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During M14, the federator should be able to execute queries both in the LeanXcale data store 

and in IBM object store, as its integration with the Spark should have been finalized. By this, 

data modification operations will be directly forwarded to the relational store, while data 

retrieval operations will be available either from the LeanXcale data store or from the object 

store. However, merging the intermediate results will be still in progress, and planned to be 

delivered in M16. At this phase, the first prototype of the federator should have been 

released, and the experimentation is planned to take place in order to measure the 

performance and resource consumption of the prototype, so as to further improve its 

implementation. 

Moreover, apart from the federator, the data pipeline will be implemented. Until M14 the 

definition of the input expected by IBM will have been decided and LeanXcale is planned to 

be able to export the dumps in the Kafka queue, with respect to the predefined format. Until 

M16, the data transfer of historical data from the LeanXcale data store to the IBM Object 

Storage should be working, and IBM should be able to retrieve this information from the 

queue and import it to the object store. Finally, the definition of the notification mechanisms 

to be developed so that the LeanXcale data store can be aware when data are available to the 

object store, so that could safely discard them, will be defined by M14. At M16 this 

mechanism should be functional, so that there can be a fully working prototype of the 

Seamless Data Analytical Framework by M18, taken into account that data might exist either 

on the LeanXcale data store, or in the IBM object store, or co-exist in both. 

8. Data Quality Assessment & Improvement 
 

8.1. Requirements Specification 

The following tables present the requirements that Data Quality Assessment & Improvement 

module should satisfy.  

Table 21 - requirement REQ-DQAI-01 for Data Quality Assessment & Improvement 

 Id Level of detail Type Actor Priority 

REQ-DQAI-01 Software DATA Developer MAN 

Name Infer data schema  

Description The Data Quality Assessment and Improvement module should be able to 

infer a data schema for a given dataset. The data schema should describe 

the name of each field, its type (e.g., integer, floating number, string, etc.) 

and its presence (mandatory or optional). 

Additional 

Information 

The schema will be stored in a sharable format (e.g. JSON document) and 

the system should be able to recall it and compare a new dataset against it, 

to discover lurking anomalies. 
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Table 22 - requirement REQ-DQAI-02 for Data Quality Assessment & Improvement 

 Id Level of detail Type Actor Priority 

REQ-DQAI-02 Software DATA Developer OPT 

Name Create schema environments  

Description The Data Quality Assessment and Improvement module should be able to 

different schema environments, for example for training and serving 

datasets. 

Additional 

Information 
This way the user should be able to feed the system slightly different 

datasets for training, validation, testing and serving purposes.  

 

Table 23 - requirement REQ-DQAI-03 for Data Quality Assessment & Improvement 

 Id Level of detail Type Actor Priority 

REQ-DQAI-03 Software DATA Developer MAN 

Name Check data anomalies  

Description The Data Quality Assessment and Improvement module should be able to 

compare a given dataset to a restored data schema and produce a data 

anomaly assessment, e.g., discovering missing columns or wrong data 

types. 

Additional 

Information 
The final analysis will be stored in a sharable format (e.g. JSON document) 

and the system should be able to recall it and present it to the user to act. 

 

Table 24 - requirement REQ-DQAI-04 for Data Quality Assessment & Improvement 

 Id Level of detail Type Actor Priority 

REQ-DQAI-04 Software DATA Developer MAN 

Name Check data skew and drift 

Description The Data Quality Assessment and Improvement module should be able to 

detect skew between training and serving data, as well as drift between 

training datasets in different model versions. 

Additional 

Information 
The final analysis will be stored in a sharable format (e.g. JSON document) 

and the system should be able to recall it and present it to the user to act. 

 

Table 25 - requirement REQ-DQAI-05 for Data Quality Assessment & Improvement 

 Id Level of detail Type Actor Priority 

REQ-DQAI-05 Software DATA Developer DES 

Name Detect data source deterioration 
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Description The Data Quality Assessment and Improvement module should be able to 

detect if a data source, e.g., an IoT sensor, is not malfunctioning and always 

emits corrupted data. 

Additional 

Information 
The final analysis will be stored in a sharable format (e.g. JSON document) 

and the system should be able to recall it and present it to the user to act. 

 

 

Table 26  - requirement REQ-DQAI-06 for Data Quality Assessment & Improvement 

 Id Level of detail Type Actor Priority 

REQ-DQAI-06 Software DATA Developer MAN 

Name Detect unexpected range of values 

Description The Data Quality Assessment and Improvement module should be able to 

detect unexpected range of values in any field of the dataset, given a 

specific context, i.e., the values in neighbouring columns. 

Additional 

Information 
The final analysis will be stored in a sharable format (e.g. JSON document) 

and the system should be able to recall it and present it to the user to act. 

 

8.2. Design  

The design of the data cleaning module consists of two phases: i) data schema inference, ii) 

data veracity. In Error! Reference source not found., an overview of the whole process is 

depicted. 

During the first phase, we compare every new dataset to a previously inferred data schema 

and look for structure or statistical anomalies. More precisely, given a training dataset, we 

compute common statistics that permits us to infer a schema prototype for this kind of 

dataset. For example, if we want to train a machine learning model, we assume that the first 

training dataset is drawn from a distribution that truthfully represents the statistical 

population.  In the case of ship management use case, a carefully curated dataset, that is 

attentively cleaned for the purposes of training a model like predictive maintenance, can also 

be used as a training prototype or template for the data assessment and improvement 

models.  

Using this statistical analysis and by employing conservative heuristics, we infer the schema 

of this dataset. Then, if we want to retrain a machine learning model that was built upon this 

dataset, or query it for predictions, the new training or serving dataset that is used is 

compared to the inferred schema and checked for anomalies. This way we can also check for 

skew or drift between the training and serving dataset distributions, and act accordingly. 

Thus, if the new training dataset derives from a very different statistical distribution, the 

system should raise an alert to the user. The data analyst should be also notified if a serving 

dataset, in production, is drawn from a different distribution, causing erroneous predictions. 

In the second phase, we take advantage of the recent developments in artificial neural 

networks (ANN) and deep learning (DL), to extract latent features that correlate different 

fields, and identify possible defects in their measurements.  
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By passing each measurement through a deep ANN, we get a distributed representation of 

each concept, e.g., engine temperature or valve pressure from the vessels of the ship 

management use case, and their relationship, which is a much more comprehensible notion 

for the machine. This process helps us gain knowledge about the correlation between fields 

and diagnose irregularities in the input data. The output of the neural network is a scoring 

value, that measures the likelihood of those measurements occurring together. Figure 15 - 

Data veracity ANN architecture presents a high-level design of this neural network. 

 

 

Figure 14 - Data Cleaning Overview 
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Figure 15 - Data veracity ANN architecture 

8.3. Early Prototype  

In the first version of the data cleaning module we focus on the schema inference part, and 

all the utilities that make this sub-component work effortlessly while integrated with the 

whole system. For example, making the results (descriptive statistics, data schema, anomaly 

report, etc.) available to every other system component, through an agreed transfer protocol 

(RESTful APIs, JSON files, etc). 

Figure 16 - Dataset schema exampledepicts how an inferred data schema is represented in 

JSON file format, while Figure 17 - JSON anomaly report document exampledepicts an 

anomaly report represented also as a JSON file format. In the schema example we see a 

feature named “payment type”, from the connected consumer use case and some computed 

characteristics of this feature, such as valid values or presence (optional or mandatory). In the 

report we can see that there are some missing values, and moreover, some values are not of 

the expected type (e.g., FLOAT). 

The flow consists of reading the dataset, infer the schema and store it back to the database. 

On serving time, the system retrieves the previously inferred schema, compares it to a new 

dataset and prints out an anomaly report, which it also stores to the database. Every file that 

is produced during this process should be available to the user, through explicitly developed 

APIs, or through the datastore. 

Baseline technologies that will be used include Deep Learning frameworks, mainly 

TensorFlow19 and PyTorch20, as well as several extensions of these, such as TensorFlow Data 

Validation and Serving21. Other technologies, such as Luigi22, can be used to build the 

necessary pipeline. 

                                                
19 https://www.tensorflow.org/ 
20 https://pytorch.org/ 
21 https://www.tensorflow.org/tfx/ 
22 https://github.com/spotify/luigi 
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Figure 16 - Dataset schema example 
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Figure 17 - JSON anomaly report document example 

 

 

8.4. Use Case Mapping  

In the scope of the Data as a Service block, the ship management and connected consumer 

use cases will be used as the two main demonstrators to highlight the functionalities of the 

Data Assessment and Improvement module. The ship fleet produces IoT data from numerous 

sensors deployed on each of its vessels, while in the connected consumer use case, a 

recommender system for a retail customer is being built. 

In the case of the ship management use case, the data is pre-processed by different 

installations of CEP subsystems (see subsection 4.1), which contain a simple, rule-based 

cleaning procedure (e.g., removing null values), and then, the Data Assessment and 

Improvement module can act as a second layer, automated and domain-agnostic data quality 

estimation. This operation could discover anomalies in data, allowing users to act and 

pinpoint deterioration in the functionality of different IoT sensors. 

In the case of the connected consumer use case scenario, the data analyst could discover 

anomalies or errors in the datasets used to train the recommendation system model(s), which 

could affect performance and accuracy. Moreover, detecting skew between training and 

serving data, as well as drift in training data in different days will be critical in locating bugs in 

production or during the re-training process, on both scenarios. 
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8.5. Experimental Plan  

An initial plan for experimentation can be summarized as follows: 

1. The schema inference submodule should correctly predict the data schema of a given 

dataset 

2. The data analyst can validate, enhance or expand the inferred data schema 

3. The Data Assessment & Improvement module should correctly detect the anomalies 

in a corrupted version of the previously given dataset 

4. The Data Assessment & Improvement module should facilitate the application of 

common cleaning tasks, like removing null values 

5. The system comprises a report and presents it to the data analyst to act 

6. Development and testing dataset will be used to assess the performance of the 

models, as the data gathered by the system accumulate 

8.6. Next Steps 

During M12, the Data Assessment and Improvement module should be able to correctly infer 

a dataset schema and detect the anomalies lurking in a corrupted version of this dataset. It 

should also detect skew between training and serving data, as well as drift between training 

sets of different time periods.  

By M14 the module should be able to pinpoint possible errors in the value range of any field 

in the dataset. This work is the focus of the second phase of the module’s development, 

namely the data veracity phase. 

By M16 the module should be fully functional and integrated to the system. 

 

 

 

 

9. Predictive & Process Analytics 
The Predictive & Process Analytics component is used in BigDataStack to: (a) perform process 

discovery from raw, event driven, data capturing activities stored as event logs, and (b) 

recommend the next step when designing a new process model in the process modelling 

phase, based on the analysis of historical data.  

 

Its input is typically an event log generated by different processes executed in BigDataStack. 

The basic functionality provided by this component is to perform process mining and analytics 

techniques on such input event logs. The application of such techniques is useful for different 

tasks. First, for process discovery, in the case that the underlying process that generated the 

event log is unknown. In case the process is known, the process analytics component is able 
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to perform conformance checking. Finally, as soon as a process model has been identified 

from the event log, it can be exploited for recommendation purposes (i.e., recommend the 

next step in a process based on historical data captured in the log) or prediction of the next 

step in a process that is executed. 

9.1. Requirements Specification 

 

 

 

Table 27 - requirement REQ-RD-01 for Predictive & Process Analytics 

 Id Level of detail Type Actor  Priority 

REQ-RD-01 Stakeholder FUNC Developer ENH 

Name Global event tracker connection 

Description A connection to the Global Event Tracker (GET) is needed for the Predictive 

& Process Analytics component.  

Additional 

Information 
The information stored in GET is crucial to the implementation of this 

module. 

 

 

Table 28- requirement REQ-RD-02 for Predictive & Process Analytics 

 

 

Id Level of detail Type Actor  Priority 

REQ-RD-02 Stakeholder FUNC Developer ENH 

Name Connection to the Process Modelling Framework 

Description A connection between this component and the Process Modelling 

Framework needs to be established, so information can be sent and received. 

Additional 

Information 
The recommendations made by this component will be in real time, as the 

Business Analyst – Data engineer is modelling the process. 

 

 

Table 29- requirement REQ-RD-03 for Predictive & Process Analytics 

 Id Level of detail Type Actor  Priority 

REQ-RD-03 Stakeholder FUNC Developer ENH 

Name Data pre-processing 
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Description The data ingested by this component needs to be in an eXtensible Event 

Stream23 (XES) file format. A tool is created, depending on the format of 

the Global Event Tracker. 

Additional 

Information 
The XES standard defines a grammar for a tag-based language whose aim is 

to provide designers of information systems with a unified and extensible 

methodology for capturing systems behaviours by means of event logs and 

event streams is defined in the XES standard. An XML Schema describing the 

structure of an XES event log/stream and an XML Schema describing the 

structure of an extension of such a log/stream are included in this standard. 

Moreover, a basic collection of so-called XES extension prototypes that 

provide semantics to certain attributes as recorded in the event log/stream 

is included in this standard. 

 
  

 

Table 30- requirement REQ-RD-04 for Predictive & Process Analytics 

 Id Level of detail Type Actor  Priority 

REQ-RD-04 Stakeholder FUNC Developer ENH 

Name ProM framework 

Description ProM is an extensible framework that supports a wide variety of process 

mining techniques in the form of plug-ins. 

Additional 

Information 
The process mining techniques used will be utilized to derive metrics of the 

event log, to create the semantics needed between events for the 

recommendation process. 
 

9.2. Design 

Figure 18 - Design of Process Analytic componentdepicts the high-level design of the Process 

Analytics component, focusing mainly on its constituent sub-components and their 

inputs/outputs. As already mentioned, the basic input for this component is an event log. 

Since this log may come in different formats, depending on the way data is captured and, on 

the application-specific logging mechanism, the first step is to transform the log in a format 

suitable for further analysis. This format is pre-specified and defined based on the input 

requirements of the next sub-component in the processing flow.  

 

                                                
23 http://www.xes-standard.org/ 
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Figure 18 - Design of Process Analytic component 

After this transformation, the process analytics engine takes as input the transformed event 

log and performs the main step of analysis. As a result, a process model is generated capturing 

the steps of the underlying process and the possible paths between steps, which can typically 

be represented using a graph-like structure. Additionally, it is possible for the graph to have 

edges annotated with weights, which correspond to the frequency that a specific transition 

between steps (an edge) has been observed. Put differently, in a weighted graph 

representation, the weight corresponds to transition probabilities between steps of the 

process. 

 

The output of the process analytics engine can be exploited during the execution of a process, 

in order to perform prediction of the next step. Furthermore, the same output can be 

exploited during process modelling, by providing recommendations to the process 

designer/modeler, based on the discovered patterns of process execution. 

 

9.3. Early Prototype 

At the time of this writing, the transformation module has been implemented, and it provides 

the functionality to transform input event logs to the desired pre-specified format, XES. The 

XES standard defines a grammar for a tag-based language whose aim is to provide designers 

of information systems with a unified and extensible methodology for capturing systems 

behaviours by means of event logs. Obviously, further extensions of this module may be 

necessary in the future, in order to accommodate new input formats. However, this is fairly 

straightforward to implement. 

The process analytics engine is the cornerstone module of Process Analytics providing key 

functionalities. In the early prototype, the process analytics engine is implemented using the 

ProM framework24, which is a state-of-the-art prototype system for process analytics. 

Functionalities of the aforementioned framework, in the form of algorithms, are used during 

the discovery phase to derive sane process models and capture statistical measures that may 

                                                
24 http://www.promtools.org/ 
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be used for the recommendation of a next step during the creation of a process in the Process 

Modelling Framework.  

In addition, the early prototype also contains a custom event log generator that has been 

implemented. This generator produces synthetic logs with varying amount of noise, which is 

quite useful to test and fine-tune the process analytics engine using controlled inputs. 
 

9.4. Use Case Mapping 

In the case of Predictive and Process Analytics the Use Cases benefit, at the moment, primarily 

in the Process Modelling phase of the project, as no viable event driven data source has been 

presented. Considering that all the steps of a process executed in project are documented in 

the Global Event tracker, trough process mining the model of a process can be discovered and 

in combination with the mechanism proposed here provide insights and recommendations, 

to the user, concerning the process flow. Following is an example using the process described 

in Figure 18 - Design of Process Analytic component  

 

The event log used for this example process was generically made as the Global Event Tracker 

is not up and running at this point. The event log created in XES format is comprised of the 

bellow events, shown here as output of the Command Line Interface of the ProM framework: 

 

{Streaming Ship Data =7, CEP2 + Data Cleaning Module 1=1, LXS=5, IBM COS=3, Kafka=4, CEP2 

+ Data Cleaning Module 2=2, Spark=6, CEP1=0} 

  

The number that each event is equal to is a randomly generated identification for the process. 

Through the algorithms used we get information concerning the frequency of each step’s 

succession to another one, the dependency of one step to another, the amount of noise in 

the input file etc. Through the analysis of these metrics a recommendation system will be put 

into place for the Process Modelling phase of the project. 
 

 

9.5. Experimental Plan 

 

The two main application scenarios of the Predictive & Process Analytics component are 

recommendation and prediction in the context of processes. The experimental plan is going 

to verify and validate both the qualitative dimension as well as the performance dimension.  

In terms of quality, typical measures, such as precision, recall, and F-measure, are going to be 

used. Alternative options will also be considered, such as blind testing using human users 

(process modelers), by capturing their feedback with respect to the produced 

recommendations.     

In terms of performance, the execution time for processing the event log and producing 

recommendations is going to be reported for different input parameters (event log size, level 

of noise, complexity of the underlying process, etc.). 
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9.6. Next Steps 

The next steps and planned activities of Predictive & Process Analytics component towards 

M18 are the following: 

• Have a prototype implementation that (a) comprises all designed modules, (b) works 

end-to-end, and (c) provides first promising results with respect to the quality of 

recommendations. Therefore, the major focus until M18 is going to be on 

recommending the next step in a Process. The prediction of future steps in a process 

is going to be researched after M18. 

• Perform empirical evaluation on the quality of recommendations using both synthetic 

and real-world event logs, in order to verify the quality and accuracy of produced 

results. 
 

 
 

10. Real-time Complex Event Processing 
 

10.1. Requirements Specification 

The real-time Complex Event Processing (CEP) deals with processing of events as they are 

produced (before they are stored). CEP processes each event independently (e.g., filtering 

those that do not match a predicate, adding more information to events) of grouping them 

on windows (e.g., calculate average speed in the last hour). CEP runs on a single node or on 

top of a distributed system. CEP is able to run distributed and parallel queries over data 

streams. CEP can be deployed at the edge to run the queries as close as possible to the data. 

For instance, it can run at vessels to detect anomalous conditions and accelerate decisions 

before sending the information to a central on shore office. 

 

Table 31- requirement REQ-CEP-01 for CEP 

 Id Level of detail Type Actor Priority 

REQ-

CEP-01 

System FUNC Developer MAN 

Name Manage data from different sources to generate alarms if required. 

Description The CEP will process data on the fly coming from sensors. Each sensor sends 

events each minute. CEP will analyse the data according to a set of rules and 

generate alarms.  

Additional 

Information 
The processing will be both stateless and over windows of time and number 

of events. 
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Table 32 - requirement REQ-CEP-02 for CEP 

 Id Level of detail Type Actor Priority 

REQ-CEP-02 System FUNC Developer MAN 

Name Send alarms and data from each node of the distributed environment to the 

data centre. 

Description Once metrics have been analysed, the CEP will send the alarms and the data 

to a central location (data centre). 

Additional 

Information 
The CEP will run on nodes of a geographically distributed environment.  

 

 

Table 33 - requirement REQ-CEP-03 for CEP 

 Id Level of detail Type Actor  Priority 

REQ-CEP-03 System PERF Developer MAN 

Name Data from distributed nodes is aggregate at a central location. 

Description Further processing over remote data will be done at a central location.  

Additional 

Information 

The CEP processing will scale to tens streams coming from different remote 

sources. 

 

 

 

 

Table 34 - requirement REQ-CEP-04 for CEP 

 Id Level of detail Type Actor Priority 

REQ-CEP-04 Stakeholder PERF Developer ENH 

Name Store data on the data store  

Description The CEP will store the data at the rate is being produced.  

Additional 

Information 

Both CEP and LX will run at the same location. 
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10.2. Design 

Figure 19 - CEP Componentsshows the main components of CEP. CEP is a parallel and 

distributed data streaming engine. That is, the execution of queries can be distributed among 

different nodes in a cluster. Streaming queries can also run in parallel in a single node.  

Clients of CEP (Client, Sender App in the figure) connect and submit queries to CEP using a 

driver, the JCEPC driver.  Applications consuming the results (Client, Receiver App in the 

figure) of the queries also use the JCEPC driver to receive the events. 

The Orchestrator is in charge of managing the CEP components and deploying and monitoring 

queries. The Orchestrator stores meta-information about the system (e.g., query deployment, 

number of nodes…) in Zookeeper, which is used as a reliable registry. The Instance Managers 

(IM) are the components in charge of query execution. The number of IMs is configured at 

deployment time. IMs can be added and removed at runtime without stopping the query 

processing. The Orchestrator automatically partitions queries into subqueries to distribute 

them among IMs. Each IM can run several subqueries. Clients can also define the distribution 

and parallelism of the queries using the JCEPC driver. 

CEP provides a set of performance metrics (i.e., throughput, latency, CPU and memory usage) 

that are handled by the metric server.  

 

Figure 19 - CEP Components 
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10.3. Early Prototype 

The goal for M12 is to provide a functional prototype, so that events can be processed as they 

are produced in remote locations. The prototype will run the queries close to where the data 

is produced. CEP will be able to process thousands of events per second in remote 

deployments. The queries will be both stateless and stateful. CEP will provide a Java driver for 

client applications to run queries on CEP. 

10.4. Use Case Mapping 

In the scope of WP4, the ship management use case will be used as the main demonstrator 

to highlight the advantages of CEP. The sensors (up to thousand) on the vessels produce data 

every minute that currently is sent to a central office every three hours to be analysed off-

line. CEP will process the data as it is produced triggering alarms as soon as possible. This use 

case requires both stateless queries (e.g., checking the current value of a sensor) and stateful 

queries (e.g., triggering an alarm is the average fuel consumption during the last half an hour 

was higher than a given value). The data will also be set to the central office for further 

analysis and correlation with historical data, including basic data cleaning. This data cleaning 

is done for each individual record/event. For instance, replacing null values, changing the 

format of date and time.  

10.5. Experimental Plan 

The performance evaluation for the CEP component will consider the following scenarios:  

• Performance evaluation with stateless queries over data coming from sensors and 

generating alarms. Thousands of events can be generated and processed per minute. 

• Performance evaluation with stateful queries over windows of time (2 minutes) 

coming from thousands of sensors. 

• Running the CEP on hardware with different resources. 

• Performance evaluation of operators storing data on LeanXcale. 

The benchmarking of the CEP will use ship management data provided and synthetic data. 

10.6. Next Steps 

 

The next planned activities for CEP consists of completing the implementation of a full 

functional CEP running on local cluster and execute performance evaluation experiments. In 

parallel, the implementation of the CEP capabilities for running federated queries on WAN 

environment with heterogeneous processing nodes will start. The deployment will take into 

account this fact in order to improve performance of queries and avoid whenever possible 

the communication overhead in these environments.   

11. Conclusions 
 

Almost one year after the start of the project, the Data as a Service block presents a fine set 
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of data services which can be mapped to the major phases of Big Data processing.  At this 

point we defined two scenarios which reflect representative requirements of one of the 

project use cases. The next seven months till the half of the project (M18) will be critical in 

the sense the that they should permit to verify that all these services not only work fine by 

themselves but can also be used together to solve real industrial problems and be applied to 

additional scenarios of BigDataStack. 

Past M18, building on the initial integration of the tasks, the goal will be twofold: first, to 

develop the more advanced capabilities of the tasks, secondly to get fully integrated with the 

other major building blocks of BigDataStack overall architecture. 

 

 

 

1 https://spark.apache.org/ 

                                                


