

The work described in this document has been conducted within the project BigDataStack. This project has
received funding from the European Union’s Horizon 2020 (H2020) research and innovation programme under
the Grant Agreement no 779747. This document does not represent the opinion of the European Union, and the
European Union is not responsible for any use that might be made of such content.

Project Title High-performance data-centric stack for big data applications and
operations

Project Acronym BigDataStack

Grant Agreement No 779747

Instrument Research and Innovation action

Call Information and Communication Technologies Call (H2020-ICT-
2016-2017)

Start Date of Project 01/01/2018

Duration of Project 36 months

Project Website http://bigdatastack.eu/

D5.1 – WP 5 Scientific Report and
Prototype Description - Y1

Work Package WP5 – WP5 Scientific Report and Prototype Description

Lead Author (Org) Amaryllis Raouzaiou (ATC)

Contributing Author(s)
(Org)

Amaryllis Raouzaiou (ATC), Konstantinos Giannakakis (ATC), George
Kousiouris (UPRC), Sophia Karagiorgou (UBI), Nikos Lykousas (UBI),
Pavlos Kranas (LXS), Ricardo Manuel Pereira Vilaça (LXS), Jacob Roldan
(LXS), Francisco Ballesteros (LXS), Patricio Martinez (LXS), Christos
Doulkeridis (UPRC), Peter Jason Gould (UPRC), Ismael Cuadrado-
Cordero (ATOS), Orlando Avila-García (ATOS), Marta Patiño (UPM),
Richard McCreadie (GLA), Stathis Plitsos (DANAOS)

Due Date 30.11.2018

Date 30.11.2018

Version 1.0

Dissemination Level

X PU: Public (*on-line platform)

 PP: Restricted to other programme participants (including the Commission)

 RE: Restricted to a group specified by the consortium (including the Commission)

 CO: Confidential, only for members of the consortium (including the Commission)

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 2 of 66 bigdatastack.eu

Versioning and contribution history

Version Date Author Notes

0.1 01.10.2018 Amaryllis Raouzaiou (ATC) Initial ToC

0.2 08.10.2018 Konstantinos Giannakakis (ATC), Amaryllis
Raouzaiou (ATC), George Kousiouris
(UPRC)

Updated ToC

0.3 25.10.2018 Konstantinos Giannakakis (ATC) Contribution in Sections
5 and 9

0.4 26.10.2018 Sophia Karagiorgou (UBI), Nikos Lykousas
(UBI)

Contribution in Section
7

0.5 30.10.2018 Amaryllis Raouzaiou (ATC) Pavlos Kranas
(LXS)

Contribution in Sections
2, 3, 4, contribution in
Section 8

0.6 19.11.2018 Christos Doulkeridis (UPRC), Peter Jason
Gould (UPRC)

Contribution in Section
6

0.7 22.11.2018 Sophia Karagiorgou (UBI), Nikos Lykousas
(UBI), George Kousiouris (UPRC),
Konstantinos Giannakakis (ATC)

Revisions and edits in
Section 7, contribution
in Section 8, revisions
and edits in Sections 5
and 9

0.8 23.11.2018 Amaryllis Raouzaiou (ATC) Contribution in Sections
2, 3, 4, 10

0.9 29.11.2018 Amaryllis Raouzaiou (ATC), Konstantinos
Giannakakis (ATC), Sophia Karagiorgou
(UBI)

Revisions and edits
after the internal review
of the document.

1.0 04.12.2018 Amaryllis Raouzaiou (ATC) Final version

Disclaimer

This document contains information that is proprietary to the BigDataStack Consortium. Neither this
document nor the information contained herein shall be used, duplicated or communicated by any
means to a third party, in whole or parts, except with the prior consent of the BigDataStack Consortium.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 3 of 66 bigdatastack.eu

Table of Contents

Table of Contents ... 3

List of tables ... 4

List of figures .. 5
1 Executive Summary .. 6
2 Introduction ... 7

2.1 Relation to other deliverables .. 7

2.2 Document structure ... 7
3 Solution Architecture ... 8

3.1 Vision .. 8
3.2 Platform Roles ... 9
3.3 Design ... 10

4 Implementation and Experimentation .. 12
4.1 Experimental Setting ... 12

4.2 Implementation Roadmap ... 13

5 Process Modelling framework ... 14
5.1 Anticipated functionalities / requirements .. 14
5.2 Specification / Design .. 16

5.3 Early prototype .. 17
5.4 Use case mapping ... 18

5.5 Experimental Plan ... 18
5.6 Next steps ... 19

6 Process Mapping ... 20
6.1 Anticipated functionalities / requirements .. 20
6.2 Specification / Design .. 22

6.3 Early prototype .. 23
6.4 Use case mapping ... 24

6.5 Experimental Plan ... 24
6.6 Next steps ... 25

7 Data Toolkit ... 26

7.1 Anticipated functionalities / requirements .. 26
7.2 Specification / Design .. 28
7.3 Early prototype .. 29

7.4 Use case mapping ... 31
7.5 Experimental Plan ... 33
7.6 Next steps ... 33

8 Application Dimensioning Workbench ... 34
8.1 Anticipated functionalities / requirements .. 35

8.2 Specification / Design .. 41
8.3 Early prototype .. 49
8.4 Use case mapping ... 52

8.5 Implementation and Experimentation .. 58
8.6 Next steps ... 60

9 Adaptable Visualizations ... 62
9.1 Anticipated functionalities / requirements .. 62

9.2 Specification / Design .. 63

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 4 of 66 bigdatastack.eu

9.3 Early prototype .. 63
9.4 Experimental Plan ... 64
9.5 Next steps ... 64

10 Conclusions .. 65
References .. 66

List of tables
TABLE 1 – BIGDATASTACK PLATFORM ROLES RELEVANT TO DIMENSIONING, MODELLING & INTERACTION SERVICES 10
TABLE 2 – IMPLEMENTATION ROADMAP FOR DIMENSIONING, MODELLING & INTERACTION SERVICES 13
TABLE 3 – SYSTEM REQUIREMENT (1) FOR PROCESS MODELLING FRAMEWORK .. 14
TABLE 4 – SYSTEM REQUIREMENT (2) FOR PROCESS MODELLING FRAMEWORK .. 14
TABLE 5 – SYSTEM REQUIREMENT (3) FOR PROCESS MODELLING FRAMEWORK .. 15
TABLE 6 – SYSTEM REQUIREMENT (4) FOR PROCESS MODELLING FRAMEWORK .. 15
TABLE 7 – SYSTEM REQUIREMENT (5) FOR PROCESS MODELLING FRAMEWORK .. 15
TABLE 8 – SYSTEM REQUIREMENT (6) FOR PROCESS MODELLING FRAMEWORK .. 16
TABLE 9 – SYSTEM REQUIREMENT (7) FOR PROCESS MODELLING FRAMEWORK .. 16
TABLE 10 – SYSTEM REQUIREMENT (8) FOR PROCESS MODELLING FRAMEWORK .. 16
TABLE 11 – SYSTEM REQUIREMENT (1) FOR PROCESS MAPPING ... 21
TABLE 12 – SYSTEM REQUIREMENT (2) FOR PROCESS MAPPING ... 21
TABLE 13 – SYSTEM REQUIREMENT (3) FOR PROCESS MAPPING ... 21
TABLE 14 – SYSTEM REQUIREMENT (4) FOR PROCESS MAPPING ... 21
TABLE 15 – SYSTEM REQUIREMENT (1) FOR DATA TOOLKIT .. 27
TABLE 16 – SYSTEM REQUIREMENT (2) FOR DATA TOOLKIT .. 27
TABLE 17 - SYSTEM REQUIREMENT (3) FOR DATA TOOLKIT ... 27
TABLE 18 - SYSTEM REQUIREMENT (4) FOR DATA TOOLKIT ... 27
TABLE 19 – SYSTEM REQUIREMENT (1) FOR PATTERN GENERATOR ... 35
TABLE 20 – SYSTEM REQUIREMENT (2) FOR PATTERN GENERATOR ... 36
TABLE 21 – SYSTEM REQUIREMENT (3) FOR PATTERN GENERATOR ... 36
TABLE 22 – SYSTEM REQUIREMENT (4) FOR PATTERN GENERATOR ... 36
TABLE 23 – SYSTEM REQUIREMENT (5) FOR PATTERN GENERATOR ... 36
TABLE 24 – SYSTEM REQUIREMENT (6) FOR PATTERN GENERATOR ... 37
TABLE 25 – SYSTEM REQUIREMENT (1) FOR ADW CORE .. 38
TABLE 26 – SYSTEM REQUIREMENT (2) FOR ADW CORE .. 38
TABLE 27 – SYSTEM REQUIREMENT (3) FOR ADW CORE .. 38
TABLE 28 – SYSTEM REQUIREMENT (4) FOR ADW CORE .. 39
TABLE 29 – SYSTEM REQUIREMENT (5) FOR ADW CORE .. 39
TABLE 30 – SYSTEM REQUIREMENT (6) FOR ADW CORE .. 40
TABLE 31 – SYSTEM REQUIREMENT (7) FOR ADW CORE .. 40
TABLE 32 – SYSTEM REQUIREMENT (8) FOR ADW CORE .. 40
TABLE 33 – SYSTEM REQUIREMENT (9) FOR ADW CORE .. 41
TABLE 34 - ADW CORE API .. 49
TABLE 35 - DETAILED WORKLOAD SPECIFICATION PER UC TEMPLATE AND REAL TIME SHIP MANAGEMENT

INSTANTIATION .. 55
TABLE 36 - LXS IDENTIFICATION OF DEPLOYMENT COMBINATIONS .. 56
TABLE 37 - CEP IDENTIFICATION OF DEPLOYMENT COMBINATIONS ... 58
TABLE 38 – SYSTEM REQUIREMENT (1) FOR ADAPTABLE VISUALIZATIONS ... 62
TABLE 39 – SYSTEM REQUIREMENT (2) FOR ADAPTABLE VISUALIZATIONS ... 62
TABLE 40 – SYSTEM REQUIREMENT (3) FOR ADAPTABLE VISUALIZATIONS ... 63

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 5 of 66 bigdatastack.eu

List of figures
FIGURE 1 – BIGDATASTACK CORE PLATFORM CAPABILITIES (EXTRACTED FROM D2.4) .. 8
FIGURE 2 - DIMENSIONING PHASE .. 9
FIGURE 3 – DIMENSIONING, MODELLING AND INTERACTION SERVICES OF BIGDATASTACK .. 11
FIGURE 4 - NODE-RED .. 17
FIGURE 5 - NODE-RED EDITING NODE ... 18
FIGURE 6 - RSM SCENARIO ... 18
FIGURE 7 – DESIGN OF PROCESS MAPPING... 22
FIGURE 8 – UML DIAGRAM ... 29
FIGURE 9 – REGISTRATION OF DIFFERENT ANALYTIC PROCESSES ... 30
FIGURE 10 – COMPOSITION OF AN INDICATIVE ANALYTIC PROCESS .. 30
FIGURE 11 – STEPS PERFORMED TOWARDS THE CREATION OF AN EXECUTABLE GRAPH .. 31
FIGURE 12 – MAPPING OF DATA TOOLKIT WITH RSM UC ... 32
FIGURE 13 – MAPPING OF DATA TOOLKIT WITH CONNECTED CONSUMER (CC) UC ... 32
FIGURE 14 -GENERIC INFORMATION FLOW FOR ADW FROM D2.4... 34
FIGURE 15 - ADW DESIGN BENCHMARK RUN SYSTEM ... 42
FIGURE 16 - ADW CREATE MODEL SYSTEM ... 43
FIGURE 17 - ADW REQUEST PREDICTION SYSTEM .. 44
FIGURE 18 - BENCHMARK DESIGN ARCHITECTURE .. 45
FIGURE 19 - CLASS DIAGRAM OF THE ELEMENTS IN THE BENCHMARKING COMPONENTS. ... 46
FIGURE 20 - MODEL CREATION ARCHITECTURE ... 46
FIGURE 21 - ADS-PATTERN GENERATION ARCHITECTURE .. 47
FIGURE 22 - ANNOTATE PLAYBOOK ARCHITECTURE ... 48
FIGURE 23 - PATTERN GENERATION PREFERENCES SETTING UI ... 50
FIGURE 24 - INDICATIVE UI WITH POPULATED DIMENSIONING ESTIMATES FOR PATTERN SELECTION 50
FIGURE 25 - ADW CORE SERVICES LAYER EXAMPLE IMPLEMENTATION ... 51
FIGURE 26 - WORKFLOW DIAGRAM OF INTERACTION BETWEEN COMPONENTS .. 52
FIGURE 27 – BASE ARCHITECTURE FOR VISUALIZING BIG DATA.. 63

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 6 of 66 bigdatastack.eu

1 Executive Summary

BigDataStack delivers a complete high-performant stack of technologies addressing the needs
of data operations and applications. BigDataStack holistic solution incorporates approaches
for data-focused application analysis and dimensioning, and process modelling towards
increased performance, agility and efficiency. A toolkit allowing the specification of analytics
tasks in a declarative way, their integration in the data path, as well as an adaptive
visualization environment, realize BigDataStack’s vision of openness and extensibility.

The main objective of the dimensioning, modelling and interaction services building block of
BigDataStack is to provide all the interaction mechanisms including the Process Modelling
framework, the Data Toolkit, the Dimensioning Workbench, and the Visualization
environment. These are required in order to exploit the added-value services of the
“underlying” BigDataStack data-driven infrastructure management and the Data as a Service
offerings.

The Process Modelling Framework will allow for declarative and flexible modelling of process
analytics. Functionality-based process modelling will be concretized to technical-level process
mining analytics, while a feedback loop will be implemented towards overall process
optimization and adaptation.

The Process Mapping component targets the problem of identifying or recommending the
best algorithm from a set of candidate algorithms, given a specific data analysis task, in an
automatic way. Its role is to automatically map a step of a process to a specific algorithmic
instance from a given pool of algorithms, thereby achieving “process mapping”.

The Data Toolkit facilitates Data Scientists in building operational analytic workflows by
means of data pipelines through Directed Acyclic Graphs (DAGs).

The Application Dimensioning Workbench aims to provide insights regarding the required
infrastructure resources for the data services and application components (micro-services),
linking the used resources with load and expected QoS levels.

Finally, Adaptable Visualizations will present graphs and reports of data and analytics
outcomes (as well as monitoring information from application, resources and data levels) in
an adaptive and interactive way.

Thus, the current deliverable presents the vision for the Dimensioning, Modelling and
Interaction Services of BigDataStack, the context, the goal and the main services realizing this
vision. Moreover, the corresponding roles interacting with these services and the design of
the proposed solution are discussed in the current document. The deliverable contains the
use cases to be supported and the expected progress until M18, while it also describes in
detail the different components, along with the corresponding requirements and the next
steps. Updated versions of this report are planned for M23 and M34 respectively.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 7 of 66 bigdatastack.eu

2 Introduction

2.1 Relation to other deliverables

The current deliverable, the first BigDataStack deliverable concerning Dimensioning,
Modelling and Interaction Services (D5.2 and D5.3 are scheduled for M23 and M34
respectively) is related to several other BigDataStack deliverables in a direct or indirect way.

D2.1 (State of the art and Requirements analysis - I) identifies and specifies the technical
requirements for BigDataStack both through use case (UC) providers and technology
providers, while D2.4 (Conceptual model and Reference architecture - I) provides information
about the key functionalities of the overall architecture, the interactions between the main
building blocks and their components, along with a first version of the internals of these
components regarding research approaches to be realised during the course of the project.

We should also state that the Requirement Tables of the corresponding components of the
Dimensioning, Modelling and Interaction Services (Tables 3-33 and 38-40) are compiled
together with the rest of requirements of BigDataStack in D2.2 (Requirements & State of the
Art Analysis - II); they are included in this document for the reader’s convenience.

Finally, D3.1 (WP3 Scientific Report and Prototype description - Y1) and D4.1 (WP4 Scientific
Report and Prototype description - Y1) are the deliverables which, in combination with D5.1,
present the current technical status (dealing with Data-driven Infrastructure Management
and Data as a service respectively) of BigDataStack project.

2.2 Document structure

Section 3 gives an overview of the various components, while Section 4 provides information
for the experimental setting and implementation roadmap. Sections 5 to 9 follow the data
flow in the dimensioning, modelling and interaction services’ block of BigDataStack
architecture and are dedicated to each one of the different components, namely Process
Modelling framework, Process Mapping, Data Toolkit, Application Dimensioning Workbench
and Adaptable Visualizations.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 8 of 66 bigdatastack.eu

3 Solution Architecture

This section describes the technical solution for the Dimensioning, Modelling & Interaction
Services of BigDataStack. Firstly, it gives a general overview of the BigDataStack capabilities
(context, goal, main functions or services); secondly, it enumerates the platform roles
interacting with these services; and finally, it describes the design of the proposed solution.

3.1 Vision

BigDataStack offerings are depicted through a full stack aiming to facilitate the needs of data
operations and applications (all of which tend to be data-intensive) in an optimized way. The
BigDataStack core platform capabilities are depicted in Figure 1 and further analysed in D2.4.

Figure 1 – BigDataStack core platform capabilities (extracted from D2.4)

These six BigDataStack core platform capabilities are envisioned to achieve the business goals
or expectations from the different stakeholders. Dimensioning Workbench, Process
Modelling, Data Toolkit and Data Visualization are the four core offerings of BigDataStack
platform that are discussed in the present deliverable.
The goal of Data Visualization is to present graphs and reports of data and analytics outcome
in an adaptive and interactive way, while the Data Toolkit facilitates BigDataStack users build
operational analytic workflows by means of data pipelines through Directed Acyclic Graphs
(DAGs). In the case of Process Modelling, the goal is to provide a framework that will allow
for declarative and flexible modelling of process analytics, while the Dimensioning
Workbench will enable the dimensioning of applications in terms of predicting the required
data services, their interdependencies with the application micro-services and the necessary
underlying resources.
These capabilities are mainly engaged in Entry and Dimensioning Phases of BigDataStack (see
D2.4).

During the Entry Phase:
1. Data owners ingest their data in the BigDataStack-supported data stores through a

unified API.
2. Given the stored data, the Business Analysts design and evaluate their business

processes, using the user interface (UI) provided by the Process Modelling framework
and the available list of “generic” processes. The compiled business workflow is

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 9 of 66 bigdatastack.eu

mapped to concrete tasks through the Process Mapping mechanism (incorporated in
the Process Modelling framework).

3. The graph of services is made available to the Data Scientists through the Data
Toolkit, where they can also specify their preferences and constraints.

4. The Data Scientists are also able to insert their tailor made Machine Learning (ML)
algorithms facilitated by automated and managed processes, e.g. CRUD-ers will be
made available on the support of this purpose.

The output of the Entry Phase is a playbook descriptor that is passed to the Application
Dimensioning Phase in order to identify the resource needs for the services.

During the Dimensioning Phase (Figure 2):

1. The input from the Data Toolkit is used to define the composite application needs
with relation to the required data services;

2. The identified/required data services are dimensioned (as well as all the application
components, regarding their infrastructure resource needs), by exploiting a load
injector generating different loads, to benchmark the services and analyse their
resources and data requirements (e.g. volume, generation rate, legal constraints,
etc.).

Figure 2 - Dimensioning Phase

The output of the dimensioning phase is an elasticity model, i.e. a mathematical function that
describes the mapping of the input parameters (such as workload and QoS) to needed
resource parameters (such as the number of VMs, bandwidth, latency etc.).

3.2 Platform Roles

Table 1 lists the BigDataStack roles relevant to Dimensioning, Modelling & Interaction Services
(see the complete list of roles in Deliverable D2.1).

Id Name Description

ROL-02 Data Scientist The process model is made available to the data scientist
through the Data Toolkit. BigDataStack offers the Data Toolkit
to enable data scientists both to easily ingest their analytics
tasks, and to specify their preferences and constraints to be
exploited during the dimensioning phase regarding the data
services that will be used (for example preferences for the data
cleaning service).

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 10 of 66 bigdatastack.eu

ROL-03 Business
Analysts

BigDataStack offers the Process Modelling Framework allowing
business users to model their functionality-based business
processes and optimize them based on the outcomes of
process analytics that will be triggered by BigDataStack. The
business analyst can search processes from the list of available
processes, create a flow of processes and set objectives for the
overall flow or per process. The visual analytical reports are
made available to the business analyst through the
visualization layer.

ROL-04 Application
Engineers and
Application
Service
Owners

The updated model is made available to the application owner
/ engineer through the Application Dimensioning Workbench.
BigDataStack offers the Application Dimensioning Workbench
to enable application owners and engineers to experiment
with their applications and dimension it in terms of its data
needs and data-related properties.

Table 1 – BigDataStack Platform roles relevant to Dimensioning, Modelling & Interaction Services

3.3 Design

The conceptual view of Dimensioning, Modelling & Interaction Services consists of four main
blocks, as summarized in the following paragraphs:

1. Process Modelling
The Process Modelling Framework allows for declarative and flexible modelling of
process analytics, while the Process Mapping component targets the problem of
identifying or recommending the best algorithm from a set of candidate algorithms.

2. Data Toolkit
The main objective of the data toolkit is to design and support data analysis workflows.
It facilitates Business Analysts and Data Scientists in building operational analytic
workflows, while it also interacts with the Adaptable Visualizations component.

3. Dimensioning Workbench
The Application Dimensioning Workbench (ADW) aims to provide insights regarding
the required infrastructure resources for the data services and application
components (micro-services), linking the used resources with load and expected QoS
levels.

4. Adaptable Visualizations
Adaptable Visualizations component will present graphs and reports of data and
analytics outcome in an adaptive and interactive way.

As it is depicted in Figure 3, typical Big Data flow starts from the Process Modelling Block
(Process Modelling and Process Mapping), then the defined processes are further concretized
through the Data Toolkit and its output will be passed to the Dimensioning Workbench. The
analytics insights from the Data Toolkit feed the Adaptable Visualisations component.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 11 of 66 bigdatastack.eu

Figure 3 – Dimensioning, Modelling and Interaction Services of BigDataStack

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 12 of 66 bigdatastack.eu

4 Implementation and Experimentation

This section introduces the UC and scenarios to be supported in the incremental development
of the solution.

4.1 Experimental Setting

This section introduces the use cases and the scenarios we are using to validate the different
implementation increments (releases) of the Dimensioning, Modelling & Interaction Services.
The BigDataStack use case we have chosen to test the different components presented in this
deliverable is the Real-time Ship Management (RSM): Maintenance and spare parts
inventory planning & dynamic routing (see deliverable D2.1 section 4.1), provided by
DANAOS. Some of the highlights of the use case are (please refer to D2.1 for the full
description):

 Two key challenges in the ship management domain: (i) predictive maintenance
combined with spare parts inventory planning, and (ii) dynamic routing;

 DANAOS, a leading international maritime player with more than 60 containerships,
transporting millions of containers, sailing millions of miles to thousands of ports, and
consuming millions of tons of fuel oil, which is a partner of BigDataStack, provides the
consortium with real data in order to test the various components;

 Two different but complementary scenarios have been defined in the framework of
RSM: (i) monitoring and predictive maintenance and (ii) requisition of a spare part and
dynamic routing to the closest port where this part is available.

All the components of Dimensioning, Modelling and Interaction Services are involved in the
different stages of RSM.
Process Modelling Framework allows an analyst to create predefined rules (rules engine
component) and to actualise the required analytic tasks, through the definition of the
business processes and the associated objectives, making available a high-level description of
the required processes. Subsequently, the system, using Process Mapping component, will
select from the available ML algorithms, the best performing for DANAOS dataset.
The output of this step is a workflow graph, containing the mappings of business processes
to algorithms.
The processes included in this workflow graph will be further concretized through the Data
Toolkit. Using the Data Toolkit, one can define the data ingestion and the necessary curation
tasks for DANAOS dataset (weather data, tracks from vessels) and configure the runtime
resources. Data Toolkit can also validate the end-to-end business objectives through the
analytics insights feeding the Adaptable Visualisations.
The output of this step is a Playbook representing the grounded workflow for each process.
It will be passed to the Dimensioning Workbench to identify the necessary resources for each
node of the graph. The Pattern Generator subcomponent of the Application Dimensioning
Workbench (ADW) is not explicitly linked to the particular UC; it forms part of the underlying
application deployment backbone that supports all UCs of BigDataStack in order to identify
how to deploy the user’ s application onto the cloud infrastructure. On the other hand,
although Dimensioning core applies to the generic data services included in BigDataStack, it
can be adapted to a specific UC, specifically with relation to aspects of workload, e.g. RSM
contains tables that have more than 100 columns (extended description can be found at
Section 8.4).

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 13 of 66 bigdatastack.eu

4.2 Implementation Roadmap

Table 2 summarises the plan for Dimensioning, Modelling & Interaction Services. M14 is the
date of the next planned integration meeting, while M18 (June 2019) is a tentative date of
the mid-project review.

 M12 M14 M18

Process
Modelling
Framework

Early Prototype Use cases modelled,
first round of
feedback, finalization
of specifications and
interconnection
requirements.
Draft version using
the implemented
custom tool (see
Section 5.3).

Updated working
version, using the
implemented custom
tool.

Process Mapping First version,
containing basic
functionality, serving
as proof-of-concept

Improved version,
including more
thorough
investigation of meta-
features that can be
exploited for meta-
learning

Integrated version of
Process Mapping with
the Process Modelling
Framework, subject
to further
improvements of its
internal functionality
in the 2nd half of the
project

Data Toolkit Basic analytic
workflows without
validation

Simple end-to-end
analytic workflows
integrated with UIs,
delivering valid
Directed Acyclic
Graphs (DAGs) with
simple validation
rules

End-to-end analytic
workflows integrated
with UIs, delivering
valid DAGs with
validation rules
tailored to the UCs

Application
Dimensioning
Workbench

First version with
containerized and
configurable
benchmark tools,
initial version of the
UIs

Integration between
ADW components
and external ones of
BigDataStack

Benchmark runs with
UC specific workloads
and service
configurations
through the UI
functionality

Adaptable
Visualisations

Specifications Interfaces with
different components
as data sources to be
visualized

Early prototype with
sample data

Table 2 – Implementation Roadmap for Dimensioning, Modelling & Interaction Services

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 14 of 66 bigdatastack.eu

5 Process Modelling framework

The Process Modelling Framework will allow for declarative and flexible modelling of process
analytics. Functionality-based process modelling will then be concretized to technical-level
process mining analytics, while a feedback loop will be implemented towards overall process
optimization and adaptation.

5.1 Anticipated functionalities / requirements

The anticipated functionalities / requirements are described in the following tables (Table 3 -
Table 10), that are compiled together with the rest of requirements of BigDataStack in D2.2.

 Id1 Level of detail2 Type3 Actor4 Priority5

REQ-PMF-01 System and
Software

USE ROL-04 MAN

Name UI/UX experience

Description The system should guide the users to complete the business diagram /
flow with easy steps. It should clearly indicate what connections –
interactions are possible and provide comprehensive error messages.

Additional
Information

Table 3 – System Requirement (1) for Process Modelling Framework

 Id Level of detail Type Actor Priority

REQ-PMF-02 System and
Software

FUNC ROL-04 MAN

Name Multi-user support

Description Multiple users should be able to use the Process Modelling Framework and
create diagrams at the same time. It should also support different roles:
business analysts and data analysts. A business analyst will define a process
in a higher level and a data analyst will provide the concrete
implementations

Additional
Information

Table 4 – System Requirement (2) for Process Modelling Framework

1Identifier: To be used in D2.2 to allow for the correct traceability of requirements.
2Level of detail: Following the use of ISO/IEC/IEEE 29148:2011, we use the following levels: Stakeholder, System and Software (i.e.,
technology details).
3Type: Types of requirements are functional: FUNC (function), DATA (data); and non-functional: L&F (Look and Feel Requirements), USE
(Usability Requirements), PERF (Performance Requirements), ENV (Operational/Environment Requirements), and SUP (Maintainability and
Support Requirements).
4Actor: It needs to be either one of the BigDataStack platform roles identified in Section 3.2 or a system actor, e.g. another component or
service.
5Priority: Requirements can have different priorities: MAN (mandatory requirement), DES (desirable requirement), OPT (optional
requirement), ENH (possible future enhancement).

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 15 of 66 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-PMF-03 System and
Software

FUNC Business Analyst MAN

Name Process workflow creation

Description A business analyst should be able to create a process workflow in a higher
level. The analyst will select nodes from a catalogue and using a drag-and-
drop interface will link them together to create the flow.

Additional
Information

Table 5 – System Requirement (3) for Process Modelling Framework

 Id Level of detail Type Actor Priority

REQ-PMF-04 System and
Software

FUNC Data Analyst MAN

Name Process workflow configuration

Description The data analyst should be able to configure a process workflow with all the
required details. The data analyst will set up the nodes parameters and
define the rules for moving from one node to another.

Additional
Information

Table 6 – System Requirement (4) for Process Modelling Framework

 Id Level of detail Type Actor Priority

REQ-PMF-05 System and
Software

FUNC Data Analyst MAN

Name Process workflow export

Description The data analyst should be able to export the process workflow in
BigDataStack format.

Additional
Information

The default format of the export will be in JSON. It will include information
regarding the flows and their interconnections. Alternative export formats
(YAML, Dockerfile) will be considered based on the requirements of other
components. The user should be able to select the appropriate export
format.

Table 7 – System Requirement (5) for Process Modelling Framework

 Id Level of detail Type Actor Priority

REQ-PMF-06 System and
Software

FUNC Business Analyst MAN

Name Support for end-to-end (in terms of process workflow) objectives

Description The business analyst should be able to defile end-to-end objectives. These
objectives do not apply to a single process, but to the workflow as a whole.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 16 of 66 bigdatastack.eu

Additional
Information

Table 8 – System Requirement (6) for Process Modelling Framework

 Id Level of detail Type Actor Priority

REQ-PMF-07 System and
Software

FUNC Business Analyst MAN

Name Process constraints

Description The business analyst should be able to set apply constraints per node /
process of the workflow

Additional
Information

Table 9 – System Requirement (7) for Process Modelling Framework

 Id Level of detail Type Actor Priority

REQ-PMF-08 System and
Software

FUNC Business Analyst MAN

Name Edge constrains

Description The business analyst should be able to apply constraints / parameters per
edge (i.e. connections between processes of the workflow).

Additional
Information

Table 10 – System Requirement (8) for Process Modelling Framework

5.2 Specification / Design

The Process Modelling Framework prototype has been initially implemented by utilizing as a
baseline Node-RED [1]. Node-RED is an open-source tool for creating and deploying processes
with little or no code at all. It runs as a web server and provides a drag-and-drop interface for
designing the process. When the process is ready, it can be deployed at the Node-RED server,
by clicking Deploy. Its main use case is Internet of Things (IoT) and home automation.

The Process Modelling Framework prototype is initially built upon Node-RED functionalities
and provides its own set of palettes. The available nodes in the palette should come from the
Process Catalogue and be able to support all use cases. Instead of deploying a flow, it is easier
to export a flow into the format required by other BigDataStack components.

The following scenario should be supported:

1. Search processes from the list of available processes in the process modelling
framework

a. Search by functionality
b. Search by name

2. Create flow of processes

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 17 of 66 bigdatastack.eu

a. Add processes through a drag & drop feature
b. Add processes following the search performed
c. Link processes (create flows)

3. Set objectives / constraints / parameters
a. Set objectives for the overall flow
b. Set objectives per process
c. Set parameters / rules that (when true) enable passing from one process to

another in the flow
4. Enable parameters validation (e.g. if the business person sets an objective of data

cleaning to be finished in less than 0.00001sec)
5. Export flow in a suitable format

5.3 Early prototype

An early prototype using Node-RED has been implemented. It is a fork of Node-RED GitHub
project [2] and can run locally using node.js and npm. A Dockerfile is also provided so that it
can be run inside a Docker container.

The prototype provides its own BigDataStack palette with some sample nodes that can be
used to describe a BigDataStack workflow. Every node can be parameterized by double-
clicking on it and editing its properties. Currently only exporting the flow to Node-RED’s
internal JSON format is supported. Node-RED palette and editing node are shown in Figure 4
and Figure 5 respectively.

It should be noted that a later version of the framework will be based on custom development
and not re-use/extend an existing tool. Node-RED allows us to quickly create a prototype and
engage all required members early enough, but it may not be adequate for the
implementation of all required features. Towards this end, a custom tool will be
implemented.

Figure 4 - Node-RED

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 18 of 66 bigdatastack.eu

Figure 5 - Node-RED Editing node

5.4 Use case mapping

5.4.1 RSM scenario

Figure 6 depicts the RSM scenario as defined in the Process Modelling Framework Early
Prototype.

Figure 6 - RSM Scenario

5.5 Experimental Plan

In order to evaluate the Process Modelling Framework an experimental plan has been
created. The goal of the first prototype is to initially model the scenarios of the use cases.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 19 of 66 bigdatastack.eu

Both the Business Analyst and the Data Analyst should have all the required tools in their
hands in order to model the scenarios. It should be validated that it is possible to use a drag-
and-drop interface to model BigDataStack use cases and then export the model to an
appropriate output format. The next step will be to implement a custom tool that will be able
to load processes/nodes dynamically, integrate with recommendation engines and support
advanced validation.
In terms of evaluation metrics and KPIs, the main objectives are:

 Successful modelling of all use cases

 Good UI/UX experience with emphasis on validation

 Seamless integration with other components

5.6 Next steps

Towards a complete Process Model Framework implementation, the following steps need to
be completed:

 Complete palette for RSM scenario. All nodes should support the appropriate
configuration and event parameters;

 Complete palette for Connected Consumer (CC) - ATOS WORDLINE UC scenario.
Similar to RSM scenario full configuration should be possible;

 Export workflow to BigDataStack process format.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 20 of 66 bigdatastack.eu

6 Process Mapping

The Process Mapping component targets the problem of identifying or recommending the
best algorithm from a set of candidate algorithms, given a specific data analysis task, in an
automatic way. Its role is to automatically map a step of a process to a specific algorithmic
instance from a given pool of algorithms, thereby achieving “process mapping”.

6.1 Anticipated functionalities / requirements

The Process Modelling framework is used to create process models that contain different
types of tasks, including data analysis tasks. In order to obtain an executable program from
the process model, process mapping is required, which maps steps of the process model to
concrete implementations. In some cases, this mapping is straightforward and can be easily
derived. However, in other cases, most notably in machine learning (ML) tasks, a given task
can be implemented using different alternative algorithms. Quite often, it is hard for ML
experts to select the best performing algorithm, and even more so for the non-expert user.
Consequently, there is a need for a system that identifies the most promising ML algorithm
for the given task.
Hence, the key functionality targeted by the Process Mapping component is stated as follows.
Given a machine learning task, a dataset, and a set of available ML algorithms that can handle
the given task, the component selects (or recommends) the subset of ML algorithms with best
performance. Essentially, the problem can be cast as a search problem, where the search
space consists of the available ML algorithms, and the objective is to identify the best
performing algorithms.
Obviously, covering all possible types of processes is a tedious task that goes beyond this
project. In fact, previous EU projects, most notably METAL [11] and MiningMart [12], have
focused on algorithm selection for specific problems. Instead, in the context of the Process
Mapping component, the focus will be on Machine Learning tasks, since this is very important
for the successful analysis of big data. Moreover, ML algorithm selection is challenging,
because the connection between an ML algorithm and the characteristics of the data under
analysis is still not well-understood. Towards this goal, the Process Mapping component
follows a meta-learning approach [10]. We refer to [13] for a survey of the problem of meta-
learning for algorithm selection, and also to recent notable works for classification [14] and
clustering [15] (the former having been the object of much more extensive studies).

The anticipated functionalities / requirements are described in the following tables (Table 11-
Table 14), that are compiled together with the rest of requirements of BigDataStack in D2.2.

 Id Level of detail Type Actor Priority

REQ-DO-01 Stakeholder FUNC ROL-04 MAN

Name Compatibility with output of Process Modelling

Description The Process Mapping component is able to process the output of Process
Modelling, in order to select appropriate ML algorithm(s) for specific
Process steps.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 21 of 66 bigdatastack.eu

Additional
Information

This requirement practically ascertains that the two components (Process
Modelling and Process Mapping) are compatible and that the output of the
first can be consumed by the second.

Table 11 – System Requirement (1) for Process Mapping

 Id Level of detail Type Actor Priority

REQ-DO-02 Stakeholder FUNC ROL-04 MAN

Name Extraction of metadata

Description Given a dataset, extract a set of metadata that is sufficient in order to
discover similarities between datasets, in particular regarding the
underlying data distributions and other statistical properties.

Additional
Information

The metadata should cover at least statistical and information-theoretic
characterization of a given dataset.

Table 12 – System Requirement (2) for Process Mapping

 Id Level of detail Type Actor Priority

REQ-DO-03 Stakeholder FUNC ROL-04 MAN

Name Build and maintain a meta-knowledge repository

Description Collect and store information about datasets, metadata, and the
performance of ML algorithms that have been executed on the datasets.
This information is referred to as meta-knowledge, because it is essentially
knowledge about the learning process. This meta-knowledge repository is
going to be used for meta-learning, which is defined as the study of
methods that exploit meta-knowledge to obtain efficient models and
solutions by adapting machine learning processes.

Additional
Information

The meta-knowledge repository is augmented with information about the
execution of ML algorithms on new datasets.

Table 13 – System Requirement (3) for Process Mapping

 Id Level of detail Type Actor Priority

REQ-DO-04 Stakeholder FUNC ROL-04 MAN

Name ML algorithm selection

Description Given a machine learning task, a dataset, and a set of available ML
algorithms that can handle the given task, select (or recommend) the subset
of ML algorithms with best performance.

Additional
Information

It assumes the availability of a pool of ML algorithms (e.g., a ML library) and
an execution environment for running ML algorithms on different datasets
and evaluating their result quality.

Table 14 – System Requirement (4) for Process Mapping

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 22 of 66 bigdatastack.eu

6.2 Specification / Design

The inputs of the Process Mapping component consist of:

 The analysis task T (e.g., Regression, Classification, Clustering, etc.) that the user
wishes to perform. This task is typically an individual step of a process model;

 Additional information that is dependent on the analysis task T (e.g., the response –
predictor variables in the case of Supervised Learning, the desired number of clusters
in the case of Clustering, etc.);

 A dataset D that is subject to the analysis task T.

The output of the Process Mapping component is a selected algorithm Ai(T) from a set of
available algorithms {A1, A2, …, An} that are applicable to task T, which is predicted to be the
most suitable for executing the data analysis task T at hand. In practice, the component
achieves mapping of steps of a Process to concrete algorithms.

Figure 7 presents the design of the Process Mapping component, which is a refined version
of the one reported in the global architecture (cf. deliverable D2.4). As already mentioned,
the input is provided by a user that has a dataset D and needs to perform an analysis task T.
In the first step, a descriptive model M(D) of the input dataset D is generated. This is also
referred to as metadata. This model can be conceived as a feature vector that contains various
data characteristics, capturing different aspects of the dataset D, and aiming at providing
sufficient information to be able to compute similarities between models at a later step. At
this phase in the project, the focus is on features, such as: dimensionality, intrinsic
dimensionality, cardinality, correlation between dimensions, entropy, mutual information,
and sparsity-related statistics. However, it is foreseen that the set of features is extensible,
and other features can be added in later phases of the project, based on further research and
empirical evaluation.

Figure 7 – Design of Process Mapping

In the second step, the Analytics Engine receives the model M(D) and attempts to discover
similar models M(D’) of any other dataset D’ that has been processed in the past. Information
about past models, algorithms that were executed on models, and evaluation results, is
stored in the Analytics Repository. Discovering the most similar model M*(D’) to the given

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 23 of 66 bigdatastack.eu

model M(D) from a set of models M(D’) can be performed in different ways. One option is to
use a properly defined similarity function that operates on two models and computes the
similarity between them. In the case of feature vectors, potential similarity functions could
be based on the cosine similarity, or on a weighted Euclidean distance. Another alternative is
to learn such a similarity function, based on the data stored at the Analytics Repository, which
can be used for training. In the example depicted in Figure 7, algorithm A1 is selected because
it has been executed on a similar dataset to the one at hand and has produced the best result
quality.

At the final step, the Evaluator executes the selected algorithm A1 on the dataset D, evaluates
the result using a quality metric appropriate for task T, and records this result in the Analytics
Repository (the meta-knowledge repository), in order for this information to be available for
future analysis tasks.

6.3 Early prototype

The overall objective is to have a first version of the prototype by M18, which will enable the
assessment of the result quality of Process Mapping, in order to identify potential
improvements that need to be performed in the second half of the project. In addition, even
though big data aspects are considered in the final implementation, the current focus is on
rapid prototyping and quick evaluation of results, to have early feedback on the underlying
methods employed. Therefore, parts of the prototype on M12 are built using standard
technologies (e.g., python libraries, tools such as WEKA [5], etc.). However, it is foreseen that
the final prototype will be based on big data technologies, and already parts of the prototype
have become big data ready.

By M12, the early prototype of Process Mapping has focused on the following functionalities:
(a) design and implementation of the Descriptive Model Generator, (b) designing the
Analytics Engine, (c) rapid prototyping of the Evaluator module, and (d) building the Analytics
Repository.

The features extracted from the Descriptive Model Generator are critical to achieve high
result quality. To this end, a literature survey has been conducted in order to identify which
features and metadata can be exploited, in order to model datasets adequately and enable
discovering similarities in a subsequent phase. The current implementation uses (i) basic
metadata such as dimensionality and cardinality, (ii) descriptive statistics per column
(average, mean, st.deviation), (iii) statistical tests between columns (correlation coefficient),
and (iv) information-theoretic measures (entropy, mutual information). A partial objective of
the early prototype is to identify the limitations of using these measures, in order to identify
additional measures that can be exploited for data representations in the future.

The Analytics Engine is the second critical module, as it exploits the generated descriptive
models, in order to discover similarities between datasets. In the early prototype, the focus
is on vector-based similarity functions that are suitable for high-dimensional representations,
such as the cosine similarity. However, in the future, it is expected that alternative approaches
will be considered, such as learning a similarity function by training a machine learning
algorithm using historical data.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 24 of 66 bigdatastack.eu

The Evaluator module aims at executing a selected algorithm on a given dataset and
evaluating the result quality. For M12, we use off-the-shelf tools and libraries (e.g., python
libraries, WEKA), which are easy to use. However, an instantiation of the prototype has been
implemented in Spark’s MLlib [6], which is going to be the final platform for parallel execution
of scalable machine learning algorithms.

Finally, the Analytics Repository is currently implemented as a storage repository, maintaining
data descriptors, results of algorithms execution, and quality indices for each executed
algorithm. Later in the project, the plan is to implement this by using NoSQL technologies, in
order to achieve scalability also at this level of the prototype, as well as to support flexibility
in the schema and types of data and metadata that need to be maintained.

6.4 Use case mapping

Continuing on the example of Section 5, the Process Mapping component can be applied to
the RSM UC, by selecting the mapping of a step to a ML task in an automatic way. For example,
when the depicted pattern recognition node is used in a diagram, then its mapping to a ML
algorithm is going to be performed automatically by the Process Mapping component.

Furthermore, it should be clarified that the underlying mechanism of the Process Mapping
component is independent of the actual UC, and can be applied on other UCs in BigDataStack.

6.5 Experimental Plan

For the evaluation of Process Mapping, an experimental plan has been designed aiming at a
thorough investigation of the quality of the mapping. To this end, the initial focus will be on a
specific sub-category of ML tasks, which contains a small set of algorithms, in order to check
that the Process Mapping component is indeed able to provide promising results in terms of
algorithm selection. During this phase, the extraction and exploitation of various meta-
features will be evaluated as well. In the next phase, the intention is to generalize the Process
Mapping component to a wider category of ML tasks. This evaluation methodology is typical
for computer science research, starting from simple and specific versions of the problem and
moving gradually to more generalized scenarios of use.

In terms of evaluation metrics and KPIs, the main objective of Process Mapping is to provide
a relative ranking of the set of available algorithms, so that the most promising/suitable
algorithm(s) for a given task can be selected. For the evaluation, our first intention is to
compare against a baseline solution that randomly selects an algorithm from the set, in order
to show that our method is much better than a random selection algorithm. Second, we
intend to measure the accuracy of algorithm selection, in comparison with an oracle that
always selects the best algorithm(s). In addition, the gain in performance will be quantified,
in terms of the time saved by our approach compared to the brute-force approach that runs
all algorithms and selects the best one based on post-execution evaluation. Last but not least,
we are going to investigate how the system improves the quality of Process Mapping, when
the Analytics Repository is augmented with more meta-knowledge, based on more results of
algorithm execution on new datasets.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 25 of 66 bigdatastack.eu

6.6 Next steps

The next steps and planned activities of Process Mapping component towards M18 are the
following:

 Have a prototype implementation that (a) comprises all designed modules, (b) works
end-to-end, and (c) provides first promising results with respect to the quality of
algorithm selection;

 Identify potential weaknesses of the Descriptive Model Generator and the Analytics
Engine as of M18, since these are the two most challenging modules of the
architecture, thereby providing valuable feedback that can be exploited in the second
half of the project for tuning the methods, optimizing performance, or trying
alternative approaches;

 Perform empirical evaluation using both synthetic and real-world datasets, in order
to verify the quality and accuracy of produced results.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 26 of 66 bigdatastack.eu

7 Data Toolkit

7.1 Anticipated functionalities / requirements

The Data Toolkit facilitates Business Analysts and Data Scientists build operational analytic
workflows by means of data pipelines through Directed Acyclic Graphs (DAGs). These graphs
consist of nodes and edges with properties where the end-user can define the starting and
ending stage and the intermediate processing stages she wants to perform towards the
realization of her analytic task. The pipelines enable to define the set and the sequence of the
stages required to be executed in order to set up end-to-end Big Data analytics based on a
framework agnostic manner. These pipelines comprise the entire data orchestration lifecycle
coupled with the corresponding executables. This means that the end user will be only aware
and will take care of the conceptualisation of her analytics functionality and the desired
objectives to be achieved in an agnostic way (i.e. REST APIs for data curation, transformation,
analytic task such as classification, clustering, etc.). For instance, a Business Analyst has access
to a higher abstraction level (BPMN like), services and the respective UIs of her Big Data
analytics and end-to-end application objectives. At the same time, a Data Scientist, having the
experience and knowledge to specify more details in the workflow set up, she has also the
ability to define connection details to the services, specific algorithm selection from a set of
relative algorithms (through an algorithms taxonomy), parameters configuration for the
analytics algorithms and/or performance metrics. The Data Toolkit enables end-users to
design point-to-point Big Data pipelines through drag-and-drop tools and intuitive UIs with
the capability to define nodes, edges and properties in both nodes and edges in order to
realize the operation, iteration and execution of the required pipelines in an ordered way.
The expected outcomes are to:

 Create and handle valid data workflows by means of a managed graph creation
process, which combine stream and batch data with the capabilities to define the
required parameters, transformations and configuration settings per node.

 Facilitate end-users to reduce the time that is required to design, develop and produce
executable analytic pipelines.

 Continuously monitor and manage pipelines performance, which is important
especially in configuration of multiple analytic tasks with diverse requirements.

The tables that are following (Table 15 - Table 18) describe the requirements engineering
method specified in D2.1 and are compiled together with the rest of requirements of
BigDataStack in D2.2.

 Id Level of detail Type Actor Priority

REQ-SY-DT-01 Software FUNC ROL-02, ROL-03 MAN

Name Describe data mining and analysis processes through data workflows

Description Support for the description of data mining and analysis processes,
interconnected to each other in terms of input/output data
streams/objects. The corresponding metadata and an algorithms taxonomy
for the categorisation of the analytic processes, type of data and connection
details will be used to facilitate the description of individual nodes.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 27 of 66 bigdatastack.eu

Additional
Information

The playbook must be represented in the form of a descriptor (e.g. through
a yaml file) that can be incorporated into the Dimensioning Workbench as
well as the Dynamic Orchestrator.

Table 15 – System Requirement (1) for Data Toolkit

 Id Level of detail Type Actor Priority

REQ-SY-DT-02 Software FUNC ROL-02, ROL-03 MAN

Name Express data workflows through graphs using nodes and edges

Description Data workflows are represented in the form of an analysis application graph
that includes the set of individual processes as nodes of the graph along
with their binding/dependencies in the form of virtual links (i.e. edges). The
links may include properties representing constraints, KPIs or objectives
which are desirable at specific analytic stage.

Additional
Information

Table 16 – System Requirement (2) for Data Toolkit

 Id Level of detail Type Actor Priority

REQ-SY-DT-03 Software FUNC ROL-03 MAN

Name Validate graph through chain-ability constraints

Description This requirement resolves chain-ability constraints through different nodes
in the data workflows. The target is to produce a valid graph. This is the
reason why a set of checks will be performed to meet these prerequisites.
If these prerequisites are not met, the graph is not considered valid.

Additional
Information

Table 17 - System Requirement (3) for Data Toolkit

 Id Level of detail Type Actor Priority

REQ-SY-DT-04 Software FUNC ROL-03 MAN

Name Link valid graphs with viable executables for Big Data analytic processes

Description This step links the graph with the actual executable image. In order to cope
with the problem of vendor lock-in format of the executable the container
format has been chosen. To this end, the actual container pulling will be
performed.

Additional
Information

Table 18 - System Requirement (4) for Data Toolkit

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 28 of 66 bigdatastack.eu

7.2 Specification / Design

The Data Toolkit fulfils all the system requirements that are needed to deliver the
execution engine for analytic pipelines including Spark MLlib, other Distributed Machine
Learning frameworks and functionalities and machine learning algorithms defined by the
end-user to support the BigDataStack UCs. This component also interacts with Application
Dimensioning Workbench which produces metrics on the workflows’ performance and
Process Mapping which finds the best setting between analytic tasks and the
corresponding algorithm selection.
The pipeline describes the flow of data from the origin system to the destination systems
and defines how to transform the data along the way. The pipeline includes interfaces
(high-level APIs) to execute basic data handling operations such as filtering, sampling, etc.,
feature selection and data transformations, basic statistics (e.g. mathematical
transformations) and machine learning algorithms including classification, clustering,
regression, collaborative filtering and frequent pattern mining. The data workflow should
be in a serializable format adopting Data Frames (e.g. through Resilient Distributed
Datasets (RDDs) structures) in order to support different data types (structured and
unstructured data, text, vectors, etc.). Each node expresses a distinct processing stage and
its output should be expressed in JSON format (or other formats if needed). To facilitate
Dimensioning Workbench and Dynamic Orchestrator, the result of Data Toolkit is provided
in the form of a descriptor such as a yaml file.
Data travel through the pipeline in batches. Each stage is directly mapped into a node of
the Directed Acyclic Graph. Origin nodes read data from the BigDataStack system or as data
arrive in the case of real-time data streams. A proceeding node may be either a data
curation task or a data analysis task. In the case of data curation, the task refers to filtering,
sampling, dimensionality reduction and feature selection. Each of these tasks is correlated
with a set of runtime parameters which can be specified at this stage or refined upon
experimentation. In the case of an analytic task, either the type of analysis can be specified
(e.g. classification) or the set of the algorithms (e.g. logistic regression, decision tree,
random forest, etc.) which supports the respective analytic task. The data move from node
to node until they reach the ending node. The ending node should feed Adaptable
Visualizations with insights derived by this analysis pipeline.
The Data Toolkit facilitates a workflow enactment meaning that it grounds the pipeline
into an executable workflow. It requires a set of runtime values for its optimal
configuration. These runtime values include end-to-end analytic task objectives, runtime
parameters, runtime properties and runtime resources. A Business Analyst may be able to
define a high level abstraction of the DAG along with her end-to-end business objectives in
a BPMN like manner. A Data Scientist can define and specify, in case she knows in advance,
more details along the analytic workflow. The analytic task objectives are related with the
KPIs that are defined by the user coupled with each specific scenario of her UC and may
include time constraints, requirements regarding algorithm accuracy, scalability and
performance. The runtime parameters are parameters that the end-user defines in the
functions triggered in the pipeline in the form of arguments in order to invoke specific
algorithms with specific parameters. In the case of a Data Scientist, when she starts the
pipeline, she may know in advance the parameter values to use or let to be determined
while experimentation of iterative analytic tasks with different settings through the
Process Mapping. The runtime parameters define values for the algorithms of the pipeline

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 29 of 66 bigdatastack.eu

or a stage of the pipeline. For example, while invoking kNN (k-Nearest Neighbors) algorithm
for classification, either the end user sets in advance the value of k or lets to be determined
after some cycles of experimentation based on the collected results. The runtime
properties may include different sets of values / volumes / veracity for different datasets.
The runtime resources include configuration regarding the number of CPUs, RAM, the
number of processing nodes and can be set in an end-to-end workflow execution scenario
by the user and/or updated by the Dimensioning Workbench.
The end-user can also inject her/his own library, analytic function or script triggered at
specific stages of the pipeline. This is realized by defining at each node / stage all the
configuration that is required (e.g. connection details, APIs, etc.) in order to invoke a
specific image, procedure or task along with the respective details if needed.
The pipelines can be saved and loaded by the Catalogue of Predictive Analytics to facilitate
end-users use and re-use already existing analytic workflows, jobs and topologies. Also, the
support of Kubernetes enables to execute scalable workload with time elasticity
constraints.
In Figure 8, we present the high-level functionalities of the Data Toolkit in a UML
Component diagram including both end-users, i.e. Business Analyst and Data Scientist.

Figure 8 – UML Diagram

7.3 Early prototype

The early prototype of the Data Toolkit includes the different services, wrappers, APIs and
tools that consist the BigDataStack solution towards the workflows enactment through the
automation of Big Data analytics. The development and deployment of the services is
currently a running task with an early version of the Data Toolkit to be expected in M18. In

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 30 of 66 bigdatastack.eu

the following, we present some screenshots exposing the current functionalities of the early
prototype of Data Toolkit.

Figure 9 presents an indicative UI where the end-users can register their own analytic
processes, provide a short description and create their own analytics palette.

Figure 9 – Registration of different Analytic Processes

Figure 10 demonstrates an indicative example of composing an analytic process by fulfilling
some prerequisites (i.e. constraints), where a php component requires a sql interface and has
the constraint to be connected with a MariaDB instance.

Figure 10 – Composition of an indicative Analytic Process

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 31 of 66 bigdatastack.eu

To produce an executable graph a set of validation steps and dependencies resolution will be
executed in the background to facilitate end users correctly set up their own analytic
processes including: a) check executable prerequisites; b) fetch corresponding images; c) wait
until all dependencies are resolved and d) register data workflow upon health-check passes.
Figure 11 presents an indicative deployment of an executable graph through the Data Toolkit
along with its log.

Figure 11 – Steps performed towards the creation of an executable graph

7.4 Use case mapping

The Business Analyst and/or the Data Scientist use the Data Toolkit, to perform a series of
tasks related to the concretization of the stages incorporated into the nodes and the edges
of the Directed Acyclic Graph such as:

 Identifying the end-to-end business objectives in terms of specifying KPIs and criteria
for the evaluation of the UC scenarios;

 Defining the data source bindings from where the datasets related to the task will be
ingested;

 Defining any data curation tasks (i.e. data cleaning, feature extraction, data
enrichment, data sampling, data aggregation, Extract-Transform-Load (ETL)
operations) necessary for the algorithms and the related steps;

 Configuring and parametrizing the runtime resources, parameters and properties
related with the analytics tasks and the respective algorithms;

 Validating the end-to-end business objectives through the analytics insights feeding
the Adaptable Visualisations.

In Figure 12, we map the functionalities of the Data Toolkit with an indicative analytics
scenario of RSM UC.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 32 of 66 bigdatastack.eu

Figure 12 – Mapping of Data Toolkit with RSM UC

In Figure 13, we map the functionalities of the Data Toolkit with an indicative analytics
scenario of Connected Consumer (CC) UC.

Figure 13 – Mapping of Data Toolkit with Connected Consumer (CC) UC

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 33 of 66 bigdatastack.eu

7.5 Experimental Plan

The Experimental Plan regarding the Data Toolkit includes to firstly setting up an end-to-end
analytic case by firstly exploiting the data provided by the UC partners. This involves some
indicative and simple analytic end-to-end application scenarios including basic algorithms and
functionalities either for RSM UC or CC UC. The task involves providing the API services and
the data orchestration to deploy valid Big Data and Machine Learning pipelines.
This plan also includes diverse configuration, mixing and matching ML technologies and
algorithms ingested by the Data Scientists to validate Data Toolkit efficiency, diversity and
applicability in an application agnostic manner which is independent from specialised
frameworks.

7.6 Next steps

Particular attention will be drawn around the following topics: specification of valid DAGs and
tools for online tractability of misaligned or mis-defined pipelines, which data format should
be used to manage different pipelines with diverse analytic requirements, how to put in
interaction and communication of BigDataStack different components and external tools.
As a next step of the work performed, it will be the conceptualization of the Data Toolkit
initiated by the Architecture to be reflected and deployed in the BigDataStack environment
as a tool of workflows enactment which defines and deploys valid, orchestrated and
executable Big Data analytic tasks. The UCs also facilitate to address the main functionalities
and deployment considerations in respect to the requirements expressed.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 34 of 66 bigdatastack.eu

8 Application Dimensioning Workbench

As indicated in D2.4, the Application Dimensioning Workbench aims to provide insights
regarding the required infrastructure resources for the data services and application
components (micro-services), linking the used resources with load and expected QoS levels.
To this end, it needs to cater for both cases of resources needed, creating
prediction/correlation models between the application/service related information (such as
KPIs and workload, parameters of the data service etc.) and the used resources to be able to
provide recommendations towards the deployment mechanisms. Benchmarking against
these services is an option that may help in concentrating the original dataset that is needed
for the creation of such supervised models, as well as historical data from previous runs. The
general architecture of ADW appears in the following figure from D2.4, broken down to two
main subcomponents, the Pattern Generator and the Dimensioning Core. Following, details
on the two subcomponents are given ([3], [4]).

Furthermore, in order to gather sufficient data for model training, a benchmarking phase is
designed, where several configurations are tested under extreme, regulated circumstances.
From the information obtained in the execution of this component, the system obtains
knowledge on the most suitable configurations for the dimensioning phase. While
bibliography already contemplates the existence of different suites for Big Data
benchmarking, these cannot be used for the BigDataStack project, given that they are
designed for very specific workflows or cannot be adapted for this project ([3], [4]). Thus, in
BigDataStack project it will be necessary to run different benchmarks adapted to the UCs,
both in terms of workloads and needed QoS metrics.

Figure 14 -Generic Information flow for ADW from D2.4

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 35 of 66 bigdatastack.eu

8.1 Anticipated functionalities / requirements

8.1.1 Pattern Generator

The aim of pattern generation is to define the different ways that a user’s application might
be deployed on available cloud infrastructure. Prior to pattern generation, the user has
defined in a conceptual manner what their application is comprised of and how the different
components of that application interact. It is the job of pattern generation to map this
conceptual view of the application into concrete specifications for how the application
components can be physically deployed.

Given the wide variety of hardware available on most cloud platforms, there are potentially
a very large number of deployment configurations for a user’s application. Each deployment
configuration may place application components on different machine types for instance. We
refer to a specific deployment configuration for a user application as a candidate deployment
pattern. In effect, pattern generation aims to produce a set of candidate deployment patterns
for a user’s application that span the range from low-cost/single machine deployments up-to
high-cost/high-performance computing deployments.

Later components within the Application Dimensioning Workbench and subsequently the
Realization system within BigDataStack will automatically analyse these candidate
deployment patterns, as well as examine their suitability given the user requirements and
preferences, with the end-goal of selecting the best one that will fit the user’s needs.

The anticipated functionalities / requirements are described in the following tables (Table 19-
Table 24), that are compiled together with the rest of requirements of BigDataStack in D2.2.

 Id Level of detail Type Actor Priority

REQ-T5.1-PG-01 System and
Software

FUNC ROL-04 MAN

Name Ingest Playbook

Description The Data Toolkit sends to the Pattern Generation a Playbook containing
the graph of the user’s application. The Pattern Generation receives the
playbook and initiates creation of candidate deployment patterns.

Additional
Information

Table 19 – System Requirement (1) for Pattern Generator

 Id Level of detail Type Actor Priority

REQ-T5.1-PG-02 System and
Software

FUNC ROL-04 MAN

Name Load Hardware Directory (File)

Description To produce candidate deployment patterns, Pattern Generation needs to
know what hardware is available to deploy the components of the user’s
application upon. Initial versions will load this information from a static
file.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 36 of 66 bigdatastack.eu

Additional
Information

Table 20 – System Requirement (2) for Pattern Generator

 Id Level of detail Type Actor Priority

REQ-T5.1-PG-03 System and
Software

FUNC ROL-04 MAN

Name Load Hardware Directory

Description To produce candidate deployment patterns, Pattern Generation needs to
know what hardware is available to deploy the components of the user’s
application upon.

Additional
Information

Table 21 – System Requirement (3) for Pattern Generator

 Id Level of detail Type Actor Priority

REQ-T5.1-PG-04 System and
Software

FUNC ROL-04 MAN

Name Service-Hardware Mapping (1-1)

Description The main process in Pattern Generation is mapping the different
components (services) to potentially suitable hardware. The first version
of this functionality produces only 1-1 mappings, i.e. one service is
mapped to one piece of hardware (e.g. machine).

Additional
Information

Table 22 – System Requirement (4) for Pattern Generator

 Id Level of detail Type Actor Priority

REQ-T5.1-PG-05 System and
Software

FUNC ROL-04 MAN

Name Service-Hardware Mapping (1-M)

Description The main process in Pattern Generation is mapping the different
components (services) to potentially suitable hardware. The second
version of this functionality produces only one to many mappings, i.e. one
service can be mapped to multiple piece of hardware (e.g. spread over
multiple machines). This may be advantageous in cases such as were a
single ‘big’ machine is more expensive than multiple smaller machines.

Additional
Information

Table 23 – System Requirement (5) for Pattern Generator

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 37 of 66 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-T5.1-PG-06 System and
Software

FUNC ROL-04 DES

Name Service-Hardware Mapping (M-1/Pods)

Description The main process in Pattern Generation is mapping the different
components (services) to potentially suitable hardware. The third version
of this functionality produces only many to one mappings, i.e. multiple
services can be co-located on a single piece of hardware. This may be
advantageous when services perform high-volume data transfers that
would be expensive over a network.

Additional
Information

Table 24 – System Requirement (6) for Pattern Generator

8.1.2 ADW Core

The ADW Core functionality extends across two areas:
a) Initially gather a dataset that includes executions at least at the data service level, with

indicative differentiations related to deployment options and input workloads and
their measured influence on the observed QoS outputs of the service. This may be
later on used in order to further generalize based on a set of identified attributes

b) Reply to the Pattern Generator for the anticipated QoS levels on investigated service
deployments

Requirements gathered and refined from D2.1 as well as the technical process in BigDataStack
are presented in the following tables (Table 25-Table 33) with relation to the ADW Core. These
tables are compiled together with the rest of requirements of BigDataStack in D2.2.

 Id Level of
detail

Type Actor Priority

REQ-SY-DW-01 System PERF/
NONFUNC

ROL-02 MAN

Name Response Time and Workload

Description The service provided by the data applications (e.g. recommender system)
must have enough speed so consumers will not notice the time taken by the
request. This implies that the Data Scientist should be able to dictate what
are the required levels of QoS, selecting them from available metrics and
appropriate levels for them.

Additional
Information

This requirement poses initially the feature of metric selection and insertion
at the Data Toolkit layer, for the Data Scientist to express their desires. Then
the annotated Playbook gets passed to the following components (primarily
ADW). Inside the Application Dimensioning Workbench, an initial candidate
solution set is created, its estimated QoS level is enriched and the solution
set is returned to the Data Scientist for final selection. Workload features
(e.g. maximum/average etc. number of concurrent users) should also be

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 38 of 66 bigdatastack.eu

able to be specified in order for the system to estimate the anticipated QoS
levels for the desired range of application level workload.
This indicates that per category of data service or data service+analytics
function a suitable selection of workload and QoS metrics should be
performed and supported across the system (including also other
components like monitoring)

Table 25 – System Requirement (1) for ADW Core

 Id Level of
detail

Type Actor Priority

REQ-SY-DW-02 System NONFUNC
/ PERF

ROL-04 MAN

Name Scalability and configurability of stress tests for load injection

Description The system should have knowledge of a mapping between workload and
QoS levels of the data services and algorithms (in order also to support REQ-
SY-DW-02). Therefore, it should be able to launch stress tests against the
data services that can easily scale to support the client sizes needed.
Furthermore, different parameters of workload should be able to be
determined

Additional
Information

Given that different data services exist in the project ecosystem, different
baseline benchmarking tools should be identified per case. Following their
selection, they need to be configured based on the respective workload
parameters and scaled based on an abstracted generic approach (e.g.
Docker containerization and Docker swarm approach)

Table 26 – System Requirement (2) for ADW Core

 Id Level of
detail

Type Actor Priority

REQ-SY-DW-03 System FUNC ROL-04 MAN

Name Dimensioning output

Description The Dimensioning workbench should provide a list of candidate
dimensioning suggestions along with the expected QoS levels towards the
ADS Deploy component (and eventually the Application Engineer role), for
the former to filter them based on an extra set of criteria and the latter to
perform the final selection.

Additional
Information

Upon reception of the playbook with the service graph, ADW needs to
estimate QoS level based on the results obtained through REQ-SYS-DW-02
and populate the respective fields. The operation should be offered through
a REST service interface for automating the process and hiding complexities.

Table 27 – System Requirement (3) for ADW Core

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 39 of 66 bigdatastack.eu

 Id Level of
detail

Type Actor Priority

REQ-SY-DW-04 System FUNC ROL-04 MAN

Name Monitoring requirements for dimensioning

Description The Dimensioning workbench should have a means to obtain monitoring
information from the deployed data services and application components
for a given deployment to extract training data for the performance models.
The rationale of the requirement is that for every needed metric (workload
oriented e.g. number of current users, requests etc. or QoS oriented e.g.
response time, throughput) in the model the respective endpoint should
exist from which the monitoring component would extract metrics values.
This applies to both actual runtime and benchmarking phase

Additional
Information

Relevant Tools affected: Data services, application components, triple
monitoring engine.

Table 28 – System Requirement (4) for ADW Core

 Id Level of
detail

Type Actor Priority

REQ-SO- ADW-01 Software FUNC ROL-04 MAN

Name Load injector dockerization

Description To support a generic load injection process as indicated by REQ-SY-DW-02,
“dockerization” of the respective load generators per type of service needs
to be performed. Thus, a specific Docker container image per needed load
generator tool needs to be provided, along with a unified process for
feeding the per case load description file based on the Docker API and
configuration process.

Additional
Information

Table 29 – System Requirement (5) for ADW Core

Id Level of
detail

Type Actor Priority

REQ-SO- ADW-02 Software FUNC ROL-04 MAN

Name Service structure specification

Description The service graph specification coming as input from the Process Modelling
and Data Toolkit should follow the Docker Compose specification, to be
understandable by the Dimensioning workbench. Following, the
Dimensioning phase should add the respective candidate resource
deployment options as additional custom metadata in the file to be used by
the Deployment selection. The same applies for the benchmarking runs,
which should be based on the same format (even without the inclusion of
the PM and Data Toolkits). All requirements needed for deploying the

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 40 of 66 bigdatastack.eu

benchmarking environment should be described using this common agreed
standard.

Additional
Information

Table 30 – System Requirement (6) for ADW Core

Id Level of
detail

Type Actor Priority

REQ-SO- ADW-03 Software FUNC ROL-04 MAN

Name Representative nature of gathered data samples

Description In order to create representative and accurate performance models,
dataset creation from benchmarking should take into account different
conditions such as applied workloads, configuration aspects of the service,
deployment options etc. In this way different bottlenecks may be examined
and the final decision making can be adapted per case of service usage.

Additional
Information

Table 31 – System Requirement (7) for ADW Core

Id Level of
detail

Type Actor Priority

REQ-SO- ADW-04 Software FUNC ROL-04 ENH

Name Deployment time for stress tests

Description The overhead added by the benchmarking setup should be negligible and
not included in the measurement process.

Additional
Information

Since the deployment phase is done in a containerized manner, the time
used in instructions different than launching the benchmark or storing data
should not be significant.

Table 32 – System Requirement (8) for ADW Core

Id Level of
detail

Type Actor Priority

REQ-SO- ADW-05 Software FUNC ROL-04 ENH

Name Benchmarking Workflow implementation

Description During the benchmarking phase, there should be a controlled manner in
which the various combinations described in REQ-SY-DW-02 and REQ-SO-
ADW-03 are enforced during an automated process in order to ease data
collection.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 41 of 66 bigdatastack.eu

Additional
Information

Table 33 – System Requirement (9) for ADW Core

8.2 Specification / Design

Following the analysis of the requirements in the previous section, we have created the set
of system UCs for the ADW subsystem. For each case, the vertical separation refers to aspects
such as Generic Functionalities (high level actions that the component needs to perform),
specific sets of User Actions (i.e. selection from a relevant UI etc.), the set of Background
Processes that need to be enacted following user preferences and any Dependencies from
external components (or internal subcomponents of ADW) that are needed in order to
complete the process.
Initially the service owner needs to design a range of stress tests/benchmarks that are needed
in order to cater for the dataset collection, including the UI based insertion of a set of needed
information such as target service, examined workload etc. In order to aid them in this
direction, a set of predefined workloads may be created from which the users may select the
subset that they are mostly interested in. These predefined workloads may be mapped to
common UCs of the services and/or tailored to the specific UCs of BigDataStack. Furthermore,
in order to include the various hardware (HW) deployment features, it is evident that the
ADW Core needs also to contact the Pattern Generator, feeding predefined elementary
playbooks for the given services and acquiring the various deployment options for the stress
test. Base load clients per data service need also to be determined and dockerized in order to
be used as load injectors per case. QoS metrics per data service need also to be defined a
priori, while the service owner needs to define which ones are of interest to maintain and
correlate. Another aspect is the various configuration options for the data services, e.g.
modes of operation, deployment etc., that might change a service’s performance profile. This
needs to be investigated on a service level and should be included in the elementary
playbooks included as available for the stress tests.
Once the data service is deployed, then the stress test (launch of the distributed clients) can
be performed. Therefore, there is an asynchronous step for benchmarking, it should wait for
the elementary playbook’s deployment, before launching the test.
In a nutshell, the issues that need to be handled offline and/or in agreement with respective
parties include:

 Enumeration of data services and/or data service+analytic algorithm options

 Predefined workloads (per data service and/or BigDataStack UC) and way to feed
them as input during the stress test

 HW deployment features from Pattern Generator

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 42 of 66 bigdatastack.eu

 Configuration options that affect data service/algorithm performance and according
elementary playbooks

 Dockerized base load clients for each tool needed by the BigDataStack data services
to emulate load

 Main QoS metrics per data service and way of acquisition/storage in a given run
Most of the aforementioned features are discussed in the context of this document (even if
for not all of the BigDataStack services) while more concrete points such as the elementary
playbook creation will be considered during the experimentation phase.
We include as the main actor the role of the Data service owner, since this is the most generic
approach. Having a wide set of data for a given data service enables the more generic and
abstract mapping to individual deployment instances of a specific scenario. Otherwise,
benchmarking needs to be performed for every single service graph, a process that is
expected to be both complicated and time consuming for the Data scientist/application
owner.

Figure 15 - ADW Design Benchmark Run System

Following the creation and acquisition of the relevant dataset, the service owner may initialize
the process of predictive model creation in order to create the generalized predictive model
per case. Based on a given name during the benchmarking phase, they may collect all relevant
data and feed them to the model creation process.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 43 of 66 bigdatastack.eu

Figure 16 - ADW Create Model System

Once the previous phase has been completed, the acquired data and/or models may be
exploited in the context of a given service instance to be deployed with given QoS needs and
workload aspects. In this case, the Data Scientist, either in the Data Toolkit and/or in the ADS
Ranking UI, will insert the needed data services instances and indicate anticipated workloads
and needed QoS levels. The annotated playbook, enriched by the Pattern Generator with the
HW deployment options, will be fed into the ADW Core, which will analyse the individual
elements and provide the estimates (from the benchmark history and/or models) that more
closely resemble the given deployment instance. Points of attention here include:

 The metrics made available to the Data Scientist need to be in accordance with the
ones supported by the benchmarking and monitoring process

 The ADW Core needs also to annotate the initial input playbook with the anticipated
QoS levels per service element and forward it to the ADS Deploy component for final
selection and deployment.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 44 of 66 bigdatastack.eu

Figure 17 - ADW Request Prediction System

Following the identified system scenarios, we present the generic design architecture for the
two main subcomponents, the Pattern Generator and the ADW Core.

8.2.1 Benchmarking and Model Creation of ADW Core

Initially, the ADW Core needs to create performance models for the elementary data services
of BigDataStack (or combinations of services and analytics algorithms). This is needed in order
to be able to reason on necessary resources needed per deployed instance of the service.
However, in order not to need tests prior to each and every deployment request, an initial
benchmarking phase is anticipated in order to gather a representative dataset with which a
performance model can be created (thus abiding to requirements REQ-SO- ADW-03, REQ-SY-
DW-03 and REQ-SY-DW-01), but for every type of data service and for a variety of workloads
and service configurations.
Based on the envisioned system UCs presented, the service owner needs to design the
benchmark phase in order to cater for representative load cases. To this end, a relevant UI is
needed to enter the various parameters, implemented in Node-RED. The purpose of this is to
gather the parameters and wrap them to the necessary JSON format that is the input to the
ADW Core relevant RESTful endpoint. In order to minimize the inserted information, relevant
fields need to be included in a parameter range type of format (e.g. min/max value and step),
meaning that the back end wrapper needs to unwrap the various combinations and launch
the according configurations. This launch could be performed in either a sequential or parallel
mode, for reducing sampling time, if the available testbed resources are adequate. For
launching the stress test for the given configuration, two features are needed:

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 45 of 66 bigdatastack.eu

 Dockerization of relevant tools that can generate base load towards the data service,
along with capable configuration of the Docker image to initialize parameters per
execution.

 Implementation of the ADS Deploy client interface in order to submit the request to
deploy the respective data service or existence of a specialized Docker Swarm cluster
to launch the data service (implying also the existence of a dockerized version of the
data service itself).

Ability to check the state and progress of a running test is also needed. The Benchmarking
Controller (BC) subcomponent automates the process of sequentially running a set of
benchmarks. For each benchmark, the BC deploys an environment (that is, a set of data
service and load injection containers working together), and retrieves the data to run a
particular model. This component is agnostic to the data, and limits itself to creating the
environment, running a configuration and storing the results.
For each benchmark, the input to the BC is:

 List of containers: Location of all containers to be deployed;

 Data & configuration: Location of data to be fed to each container and list of specific
instructions to be run inside the container;

 Storage: Location in which the output is stored.

The architecture needed for this phase appears in Figure 18.

Figure 18 - Benchmark Design Architecture

Every benchmark is run sequentially, varying the configuration to be used for the tests. Figure
19 describes a UML description of the component architecture. As shown, the benchmarking
component receives a set of benchmarks, in the form of multiple JSON documents following
the standardized playbook file, each one of which is independently run. For the BC to
individually deploy and run each benchmark, it needs to have access to a description of the
containers (for each container, it needs the container image, a set of instructions to run inside
and location of the data). Once deployed, the BC component retrieves the resulting data and
stores it in a specific location.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 46 of 66 bigdatastack.eu

Figure 19 - Class diagram of the elements in the benchmarking Components.

Following the creation of a representative dataset, model creation needs to be triggered
based on the same REST interface layer of ADW Core. Model creation is performed in the GNU
Octave [7] environment through relevant service wrappers to offer it via REST. Acquisition of
relevant data is based on the data service naming used. Once the models for each data service
are created, they are ready to be used during the online phase for populating the various
candidate deployment patterns (CDPs). It is necessary to stress that model structure is based
on the various configuration options and workload aspects, so that they act as predictors,
while the predicted output is the relevant QoS metrics for each data service.

Figure 20 - Model Creation Architecture

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 47 of 66 bigdatastack.eu

8.2.2 Pattern Generator

Pattern Generation is designed as an independent Apache Spark streaming service. The Data
Toolkit component of BigDataStack passes to the Pattern Generation service a Playbook,
containing the conceptual view of the user’s application. This Playbook is passed through a
series of Spark transformation functions that perform the core service mapping functionality.
The final function within the Spark topology posts the created candidate deployment patterns
to a mailbox which can be read by the next component in the BigDataStack application
deployment pipeline.

The architecture of the Pattern Generation component is shown in Figure 21 below. Within
Figure 21, Spark transformers are shown in orange while non-spark components are shown
in blue. As we can see in Figure 21, Pattern Generation ingests Playbook objects via a RESTful
API, which directly passes that playbook into the main Spark processing pipeline via a Spark
receiver. Once a Playbook is ingested, it is first split into services, and each service is mapped
to different types of available hardware, where that hardware is specified in an external
directory. This directory may be loaded from file or directly populated from the cluster
infrastructure management system (OpenStack in our case). Once individual or groups of
services have been mapped to hardware, these service mappings are then re-combined into
what we refer to as an availability sheet, which contains all valid service to hardware
mappings. Finally, this availability sheet is used to produce a large number of unique
candidate deployment patterns, where one candidate deployment pattern contains a service
to hardware mapping for each service in the user’s application. These candidate deployment
patterns are then published for consumption by the next step in the BigDataStack application
deployment pipeline, the ADW Core.

Figure 21 - ADS-Pattern Generation Architecture

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 48 of 66 bigdatastack.eu

8.2.3 ADW Core Online Request prediction phase

Following the population of the playbook with the various CDPs, it gets published to the
relevant REST API offered by ADW Core. For each CDP, the ADW Core needs to populate it
with the respective expected QoS levels. Thus it needs to break down the input per CDP,
extract the service graph and start predicting the QoS level per service element. Given that
the service elements are interconnected, one element’s input will be the previous element’s
output. Thus, the predicted output of the first stage will act as input to the following and so
on. For each prediction the component needs to retrieve the relevant data service baseline
model, apply the inputs and get the result, propagating it as input to the next element of the
graph. On completion, the various CDPs, annotated with the QoS levels, are then forwarded
to the ADS Ranking component to investigate and decide on the finally selected trade-off.

Figure 22 - Annotate Playbook Architecture

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 49 of 66 bigdatastack.eu

The overall API for the ADW Core, described in the previous sections, appears in Table 34.

Method Path Input Output

POST /postPlaybook Playbook YAML String Annotated Playbook
YAML string with
QoS tags. This
primarily
implements the
request prediction
operation

POST /launchTest JSON configuration file
for parameters (tool
selection, workload
features)

Return message for
test id

GET /testState/id Test id State of the test
(Complete/Ongoing)

GET /testState/id/conf Test id Configuration of the
test (workload
features, deployed
service options etc.)

GET /ServiceTestIDs/service_name Service name (from
available enumeration
of available services
(aims to return all tests
for that service

JSON array with test
ids

Table 34 - ADW Core API

8.3 Early prototype

8.3.1 Pattern Generator

A Tier-0 version of the Pattern Generation component has been developed, tested and
deployed. This component provides functionality for ingesting playbooks (REQ-T5.1-PG-R1),
loading hardware directories from file (REQ-T5.1-PG-R2) and one-to-one service to hardware
mapping (REQ-T5.1-PG-R4).

Indicative generation of patterns for service elements UI, passed to dimensioning can be seen
in Figure 23.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 50 of 66 bigdatastack.eu

Figure 23 - Pattern Generation preferences setting UI

Indicative interfaces linking with dimensioning responses (simulated at this stage) appear in
Figure 24.

Figure 24 - Indicative UI with populated dimensioning estimates for pattern selection

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 51 of 66 bigdatastack.eu

8.3.2 ADW Core

A Tier-0 version of the ADW Core is under development, testing and deployment, to provide
functionalities for requirements REQ-SY-DW-02, REQ-SO-ADW-01, REQ-SO-ADW-02. These
refer primarily to stress test implementation and service graph understanding inside the
ADW.

The REST and UI interface of the ADW Core is built in Node-RED, given the latter’s ability for
easy information manipulation (such as the one needed for receiving and processing JSON
and other diverse formats) as well as adaptation to various technology layers and protocols.
Furthermore it can easily integrate between different components and create asynchronous
flows for management of information. An example of a REST service of the ADW Core
(/postPlaybook functionality) appears in Figure 25.

Figure 25 - ADW Core Services Layer example implementation

The deployment of the environment is managed by the ADS-Deploy component, described
on deliverable D2.4 [4]. Figure 26 shows the technical workflow of the Benchmarking
Component. The process is run between three components: the pattern generator, which
generates the HW types and numbers combinations (more info on the potential combinations
per data service is included in Section 8.4.2) and launches the service; the Benchmarking
Component; and the ADS-Deploy component, which takes care of the deployment of the
environment. The communication between the Benchmarking Component (BC) and the
Dynamic Orchestrator (DO) is done using standardized JSON files for creation and destruction
of environments.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 52 of 66 bigdatastack.eu

Figure 26 - Workflow diagram of interaction between components

An early pseudo-code for the BC should be as follows:
func Benchmarking_Component (set benchmarks)
 for (benchmark in benchmarks):
 ed = benchmark.getEnvironmentDescription()
 storageLocation = benchmark.getStorageLocation()
 dcCreationFile = createDeploymentFile(ed, storageLocation)

dcDestructionFile = createDestructionFile(ed)
DynamicOrchestrator.requestNewEnvironment(dcFile)
DynamicOrchestrator.requestEnvironmentDestruction(dcFile)

8.4 Use case mapping

The Pattern Generation component of the application dimensioning workbench is not
explicitly linked to any particular UC, as it forms part of the underlying application deployment
backbone that supports all UCs in the project. As such, an effective pattern generation
component can be considered an implicit requirement for all user scenarios (SCE-RSM-01,
SCE-RSM-01, SCE-CC-01, SCE-CC-02, SCE-IMB-01 and SCE-IMB-02).

Effective pattern generation is an important step in the process of automatically identifying
how to deploy the user’s application onto the cloud infrastructure while meeting the user’s
needs and quality of service goals. This process aims to tackle the concerns of the Data
Generators and Providers (STA-02) by enabling lower-cost application deployments, as well
as the concerns of Technology Providers (STA-03) by more accurately identifying the
hardware needed for application scalability and performance.

Furthermore, Dimensioning applies primarily to the data services included in BigDataStack
and as such can be viewed as generic. However, better adaptation can be targeted towards
the specific BigDataStack UCs, specifically with relation to aspects of workload that are more

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 53 of 66 bigdatastack.eu

specific for the UC scenarios encountered in the project. This may aid us in the incorporation
of such relevant aspects during the experimentation (e.g. benchmarking process) in order to
include cases that are expected to be encountered during the course of the project.

As an example, the RSM UC contains tables that have >100 columns. This is a clear indicator
that during YCSB (Yahoo! Cloud Serving Benchmark) benchmarking of LXS, such figures in
column numbers should be included in the investigated dataset, in order also to address REQ-
SO- ADW-03, while other examples include needed throughput levels. In the following
paragraphs such details are displayed more concretely per UC.

Mapping to individual features of the data services is also considered important and is listed
in the context of this section.

8.4.1 Real-time Ship Management: Workload aspects example

Following, an initial analysis is performed on the DANAOS Real Time Ship Management
scenario aspects. Similar analysis will be performed for the remaining scenarios in the
following months. This analysis will help us to identify aspects that should be considered as
inputs (predictors) to the models, as well as configure the generic benchmark tools used (e.g.
YCSB) with specific configuration parameters for each case. Thus it may be considered that
either we merge the acquired information in one overall configuration file or create a
separate YCSB configuration file for each type of workload (thus one client container per row
of workload type in Table 35) and launch them in parallel. Probably the second case is
preferable since we will be able to distinguish (from a benchmark results acquisition point of
view) QoS metrics per workload row/type, given that different such aspects/limits are defined
per case. The majority of the specific parameters can also be considered as inputs to the
relevant UI through which a data service owner may design a benchmark run.

In general, the RSM UC has as a major step data ingestion coming from the vessels. This at
the moment happens via a batch file that is sent from each ship every 3 hours and contains
vessel and engine data on a key value row structure (timestamp, vessel code, sensor name,
sensor value), with a granularity of 1 minute measurements. Each sensor includes in this
overall zipped file its relevant measurements on a separate file and each sensor file is handled
separately (thus committing at the end of each sensor file). Ingestion is performed through
upsert SQL queries per sensor file, since the combination of timestamp and vessel code is the
primary key. Thus this functionality has an insert/update type of workload, with the majority
of operations referring to updates (first occurrence of timestamp+vesselcode will be an insert,
all other columns will be updates). For example, in the vessel data table with 23 columns we
will have for each minute sample 1 as insert and 23-3=20 updates (the columns removed are
the first inserted metric column and the timestamp and vessel code columns), resulting in an
approximate 5-95% ratio of inserts vs updates. In the context of the project and WP4, a
variation of this operation may be performed, including the merging of all sensor values in
one row on the ship side, through a relevant deployed CEP instance. For this reason, we have
also included this case of streaming data from the vessels (DANAOS-OP-2B) that may be
investigated.

Other secondary operations include telegram sending from ships to the main offices, but
these take place much less frequently (once per day and at the start and end of each journey).
The other frequent operation is a select on the averages of a given interval, which is also the

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 54 of 66 bigdatastack.eu

main current usage of the data and is used to monitor the ship’s situation on a day-to-day
basis. The overall grouping of operations along with other necessary (from a workload
definition perspective) information appears in Table 35. In some cases, if historical data are
available we can proceed with an analysis to discover aspects such as distribution of requests,
scan sizes (for the requested intervals) etc.

Use Case
Name

Type of
Operation

Frequency Number
of users

Targeted
Data
Service

Schema
details (# of
tables, table
size, #
constraint,
rule size
etc.)

Other info (e.g.
distribution of
requests)

Indicative needed
QoS level

DANAOS-
OP-1

Read
(select a
time frame
and
average)

On request,
typically 80
requests
per working
day per
user

7 (Data
Scientist@
DANAOS
premises)

LXS On tables
with 23 and
102 fields
(vessel data,
main engine)

Configurable
granularity on
time intervals
(implied scan size
on the table), log
file of intervals
could aid in
identifying scan
sizes distribution,
log file of requests
for requests
interarrival times
distribution

3 seconds
response time for
vessel data, 6
seconds for
engine data (per
request), 7 max
concurrent
transactions per
second

DANAOS-
OP-2A

Insert/Upd
ate new
data , 180
inserts->
(180-
2)*#colum
ns updates
ratio)

Every 3
hours batch
data from
each ship, 1
row per
minute of
these 3
hours
(#columns*
180 key
value raw
data rows,
360 output
tuple rows)

60 (max
number of
ships,
currently
35 with
sensors)

LXS On tables
with 23 and
102 fields
(vessel data,
engine data)

Constant rate,
batch mode
implying bursts of
operations, first
column of
time+vessel_code
is inserted (PK),
next metric
columns are
updated, 1 file per
metric column for
all 3 hours,
commit at the end
of each column
update

10 seconds for
ingestion from
the time the data
are available
following their
satellite transfer

DANAOS-
OP-2B
(Alternativ
e version
of 2A

Insert new
data
(vessel and
engine)

Streaming
mode, 1
overall row
per ship per
minute,
with
merged
tuple data
from CEP
instance on
vessel

60 (max
number of
ships,
currently
35 with
sensors)

LXS On tables
with 23 and
102 fields
(vessel data
,engine data)

Constant rate, no
need for updates
compared to
DANAOS-OP-2A

1 second per
incoming
message to be
ingested

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 55 of 66 bigdatastack.eu

DANAOS-
OP-3

Update
(with
weather
data from
external
weather
service)

Every 3
hours per
ship

60 LXS On tables
with 23
fields (vessel
data)

Constant rate
(every three
hours) per ship
but need log files
of batch arrivals
to check
distribution
between ships

10 seconds from
external data
acquisition to
storage

DANAOS-
OP-4

Insert
(telegram)
(very rare
updates)

1 per day
per ship
and at start
and end of
voyage

60 LXS On tables
with 14
fields
(telegrams)

Constant and
bursty (all ships at
12:00 UTC) for
daily, log file for
voyages to
discover average
time between
telegrams for
start and end of
journey

Response time for
operation<
5seconds, max
60ships/5
seconds=12
transactions per
second

DANAOS-
OP-5

Insert
(damages)

very rare,
about 24
per year
overall

60 LXS On tables
with 5 fields
(damages)

Arbitrary and of
no specific
concern

Of no specific
concern

DANAOS-
OP-6

Check data Depending on inputs
from DANAOS- OP-2 &
3

CEP 5 rules, 1
with for
depending
on # of SLAs
and 4
comparisons
, 4 other
with an
average of
11 fields per
rule (10,6,16
and 12) and
input stream

Depending on
inputs from
DANAOS- OP-2

<1 sec of
response time
from data
availability to
alert raising

Table 35 - Detailed Workload Specification per UC template and Real Time Ship Management instantiation

In the following months, similar tables will be created for all the UCs following the
concretization of the respective scenarios.

8.4.2 Data Services Specific Configuration, Deployment and Monitoring options

In order to have a basis for determining the performance modelling needs of the main
BigDataStack data services, an analysis is performed in these sections with relation to each
service. In order to drive the investigation, a table is populated for each case indicating the
following information:

 What are the main components of the service;

 On a per component basis, if the specific component has been designed in order to
support horizontal scaling, i.e. if it can run in distributed mode and thus be able to
utilize more nodes. In this case, we do not examine if it makes sense to actually scale
it, this is the scope of the next point. Furthermore, we do not include analysis of
vertical scaling, since the latter is the capability of the infrastructure to provide a larger

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 56 of 66 bigdatastack.eu

resource and applies in all cases (again we do not examine in this case if it is actually
beneficial to scale);

 On a per component basis, whether it would be worth examining the relationship
between horizontal scaling and actual improvement of performance and up to which
point. If based on partners’ expertise and anticipated workloads, a specific component
is not expected to need this testing in any realistic scenario, we can reduce the number
of experimentation needed. The need is indicated by a Low/Medium/High state;

 Similarly to the previous point, but for the case of vertical scaling effect.
At the moment, the analysis has been performed for LXS (Section56) and CEP (Section
8.4.2.2), while the respective one for the Object Store will be complete in the following
months.

8.4.2.1 LeanXcale data store

8.4.2.1.1 LXS Configuration/Deployment options

LeanXcale data store is a fully ACID and SQL compliant distributed database that is consisted
of three main pillars: the Key-Value Store, the SQL Query Engine and the Transactional
Manager. All these components can either co-exist being deployed in the same node, or be
deployed separately, while they can scale independently. However, for improved
performance, it is suggested that an instance of a query engine should co-exist with a data
node in order for the former to exploit the locality of the data stored in the latter and avoid
transmitting them over the network, resulting in significant overhead caused by the network
transmission and the wasted CPU cycles. The transactional manager on the other hand, can
scale linearly up to 100s of nodes, and in typical scenarios it is deployed separately. As a result,
a LeanXcale distribution consists of the data engine nodes, where the data are stored and
accessed via the query engine of the data store, and metadata nodes, which holds metadata
and other information required for ensuring the transactional semantics. The metadata nodes
contain the services needed for metadata structures: Zookeeper, Configuration Manager, the
Transactional Manager services and the metadata for the distributed key-value store. It is
worth to mention that the components of the metadata nodes are not CPU intensive, thus
they can be typically replicated for tolerance but are not usually required to scale out, which
is usually a requirement driven by the increased needs for throughput or data size. The data
engine nodes on the other hand consist of the query engine, the local transactional manager
and logger, and the data store nodes. The number of the data engine nodes required to be
deployed depends on the workload in terms of throughput of the queries and transactions
issued by the applications and the volume of data.

Component
Ability to Scale
Horizontally (i.e. run in
distributed mode)

Expected to need testing
in horizontal scaling (No
(if no ability to scale
horizontally)
/Low/Medium/High)

Expected to need testing
in vertical scaling
(Low/Medium/High)

Metadata Manager
(including Transactional,
Configuration Manager
etc.)

No No Medium

Query Engine+Datanode Yes High High

Table 36 - LXS Identification of Deployment Combinations

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 57 of 66 bigdatastack.eu

LeanXcale uses Ansible [8] to be deployed. The database administrator has to define which
elements of the data store would be part of the data node services and which one would
constitute the metadata services. As already mentioned, usually the KiVi dataserver
(LeanXcale’s distributed key value store), the query engine along with an instance of the
logger of the local transactional manager would consist a data node, while the zookeeper with
the commit sequencer, the conflict and configuration manager, along with the KiVi
metaserver would formulate a metadata node. Having a set of machines available, the
database administrator has to define which one of those will be dedicated for the metadata
nodes, and which are available for the data nodes. (S)he can also define the size of memory
of the machine and the number of the available CPUs. When all configurations are finished,
then during the execution of the playbooks all components are automatically moved to the
target nodes, along with all necessary configuration information. Upon initialization,
LeanXcale advices this configuration in order to establish proper connectivity among all its
components, and starts them with the appropriate order.

8.4.2.1.2 LXS Monitoring metrics

During the run-time, LeanXcale provides a wide set of monitoring information that could be
used by a system administrator or the platform itself to ensure normal behaviour according
to what has been specified. The monitoring information that is of interest is the information
that is being produced by the data nodes, as these are the components that should be scaled
in/out in order to improve performance under high workload. The produced metrics can be
categorized in two groups: the ones provided by the query engine and the ones provided by
the storage data node. The query engine is written in Java and provides monitoring info using
the Dropwizard framework [9]. The advantage of the latter is that it can additionally provide
statistical information on a monitoring metric, like mean time, mean time between a period
of time, the histogram of the metric etc. Dropwizard can be used with a jmx plugin which
publishes the metrics as managed beans via the jmx. Other metrics are also published and are
available directly via the jmx, while the use of the latter allows to take advantage of Java’s
built-in monitoring information which is available for every java virtual machine (i.e. number
of threads, memory usage, garbage collection statistics etc.). Additionally, the usage of jmx to
publish monitoring information makes the integration with any monitoring tool
straightforward. Query engine’s monitoring information can be grouped by specific
categories (version, network, logger performance, query executions, general information
etc.). On the other hand, the information that can be obtained from the data nodes provides
valuable insights regarding the distribution of the data, statistics of the usage per data table
basis which can be used mostly by the query engine optimization component that is
responsible to select the most efficient query plan among all candidates in order to improve
the overall performance. Due to this, the statistical information provided by the data nodes
is frequently relevant only to the query engine itself. The list of all available metrics that are
provided by the key-value store can be grouped in four main categories: I/O, memory usage,
memory management and data table specific information.

8.4.2.2 CEP

8.4.2.2.1 CEP Configuration/Deployment options

The Complex Event Processing (CEP) engine is a distributed streaming engine made by several
components: CEP Orchestrator, Instance Manager, JCECP client driver, Reliable Registry and

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 58 of 66 bigdatastack.eu

Metric Exporter. The CEP can be either deployed in a single node or in a cluster. The Instance
Manager is the worker component that does the actual processing and allows the CEP to
scale. There may be as many Instance Managers as needed. In a single node deployment
Instance Managers that process the same query should be started in the same NUMA node
to minimize the communication latencies and maximize the performance.

The CEP Orchestrator is a standalone process that is in charge of managing the CEP cluster. It
is used to register and deploy queries and it is not involved in the actual data processing.

The Metric Server is a standalone process used to collect metrics from the rest of components
and expose those metrics to the BigDataStack monitoring system.

The Reliable Registry is based on Zookeeper and it stores information related to the query
deployments and components status.

The JCEPC driver is the interface between the CEP and other applications and it runs in the
client applications.

Component
Ability to Scale
Horizontally (i.e. run in
distributed mode)

Expected to need testing
in horizontal scaling (No
(if no ability to scale
horizontally)
/Low/Medium/High)

Expected to need
testing in vertical
scaling
(Low/Medium/High)

CEP Orchestrator No No No

Instance Manager Yes High High

Metric Exporter No No No

Reliable Registry
(Zookeeper)

Yes Medium or Low Medium or Low

Table 37 - CEP Identification of Deployment Combinations

At start-up, the administrator decides the number of Instance Managers to launch and new
Instance Managers can be added to the CEP cluster at run-time as needed.

8.4.2.2.2 CEP Monitoring Metrics

The CEP provides information about the throughput and latency of the queries being
executed at run-time. All the metrics are collected by the Metric Server component which
exposes them the rest of BigDataStack platform. Each Instance Manager sends metrics
regarding the CPU consumption, throughput and latency of each operator deployed on it to
the Metric Server. The user can set the rate at which these metrics are sent to the Metric
Server.

8.5 Implementation and Experimentation

The Implementation and Experimentation plan for the different components of ADW is
presented in the following sections.

8.5.1 Pattern Generation

The Pattern Generation component is planned to be initially tested as part of the evaluation
scenarios planned at M12 (Inference without Data Access) and M15 (Inference with Data

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 59 of 66 bigdatastack.eu

Access). Under these evaluation scenarios a single user application will be deployed by the
BigDataStack platform and instrumented under variable load conditions.
Evaluation Setting: For each evaluation scenario, an application Playbook will have been
created by an up-stream process that describes the application services that are to be
deployed. This Playbook will be ingested by the Pattern Generation component, which will
produce a series of candidate deployment patterns, which can be sent for benchmarking. The
true suitability of each pattern will be evaluated based on actual deployment of the user
application using the configurations defined in those patterns.
Metrics: When evaluating the deployment patterns created by the pattern generation
component, we are primarily interested in two main metrics.

 Best Pattern Suitability: First metric we target is best pattern suitability for a user’s
application, i.e. once we have evaluated the different patterns for an application, how
good was the best pattern we produced? We want best pattern suitability to be high
across a range of application deployments, as if we cannot produce at least one
suitable pattern, we will likely cause quality of service violations or at least waste
resources during application run-time. A pattern is considered suitable if it meets all
of the user’s quality of service requirements while not wasting significant
computational/memory resources (that are related to cost);

 Number of Patterns Produced: One way to get around the problem of missing suitable
patterns would be to brute-force generate all possible patterns. However, this would
place significant load on the benchmarking functionality discussed later in this section,
leading to delays in application deployment as benchmarking evaluates each in turn.
Hence, the second metric we consider is the number of patterns produced. We want
to minimise the number of patterns produced to reduce benchmarking load. We
expect that there is a trade-off between best pattern suitability and the number of
patterns produced.

8.5.2 Benchmarking

Evaluation Setting: For each data service, an application Playbook will have been created that
describes the elementary data services that are to be deployed. This Playbook will be ingested
by the Pattern Generation component, which will produce a series of candidate deployment
patterns, which can be sent for benchmarking. Following, the various workload aspects (as
described for example in Table 35) will be applied in the used benchmarking tools in order to
generate relevant load.

Metrics: When evaluating the ability to benchmark, we are primarily interested in two main
metrics.

 Flexible Stress Test size: The stress test creation should be straightforward and be
easy to be configured to scale. Actual scalability limits may depend on available
testbed size but the launch process should be agnostic to that size and adaptable
based on user input.

 Parameter sweep definition: The user should be able to define a number of
parameters from which relevant combinations should be found and applied. This
ensures coverage of the search space as well as improved model performance in the
end.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 60 of 66 bigdatastack.eu

8.5.3 Model Creation

Evaluation Setting: For each data service, and following dataset acquisition from the
benchmarking phase, a relevant performance model will be built, based on the necessary HW,
workload and QoS features.

Metrics: When evaluating the ability to predict the behaviour of the service, we are primarily
interested in two main metrics.

 Mean Absolute Percentage Error (MAPE): MAPE is the mainstream metric for
performance prediction of the anticipated QoS levels against the actually achieved
ones based on the gathered dataset. A MAPE of less than 20% is in general considered
as operational.

 Response time of the estimation process: The estimation process should be
responsive and not delay the actual deployment stage for too long. A baseline time of
about 5 seconds per estimation should be acceptable during the investigation of the
various CDPs.

In terms of experimentation, we anticipate in the following months to initialize the
benchmarking phase for the various data services in BigDataStack, in order to gather the
necessary results for the model creation in Tier-1 of the implementation.

8.6 Next steps

8.6.1 Pattern Generator

It is currently envisaged that there will be two further releases of the Pattern Generation
component during BigDataStack, integrating more advanced functionality:

 Tier 1: This second version of the Pattern Generation component will replace
hardware directory loading from file (T5.1-PG-R2) direct population from the
OpenStack cluster infrastructure management system (T5.1-PG-R3). This version will
also extend the current service mapping system to incorporate one to many mappings
service-hardware mapping (T5.1-PG-R5);

 Tier 2: the third and final version of the Pattern Generation component will include
automatic construction of service pods, where multiple services can be co-located on
particular pieces of hardware (T5.1-PG-R6), in addition to the more traditional
mapping functionality provided by the earlier Tiers.

8.6.2 ADW Core

For ADW Core similarly, the initial version targets at meeting requirements with relation to
initializing and executing benchmarks in order to collect the data for the next phases. To this
end it will cater for load creation, dockerization and setup of the environment and analysis of
the needed types of workloads, as well as performing the experiments for the various data
services and relevant loads. Furthermore, UI driven benchmark design will be included in this
tier.

Two more versions will follow, integrating advanced functionality:

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 61 of 66 bigdatastack.eu

 Tier 1: The second version will aim at addressing requirements, aiming at having initial
models for the included data services in BigDataStack and the main functionality for
adding QoS estimates in the service graph for a given data service deployment;

 Tier 2: the third and final version of the ADW Core will handle networked estimated
at the entire service graph level.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 62 of 66 bigdatastack.eu

9 Adaptable Visualizations

Adaptable Visualizations will present graphs and reports of data and analytics outcome in an
adaptive and interactive way. Based on the form and the size of the data, different
visualizations will be dynamically presented. Performance aspects such as computing, storage
and networking infrastructure data, data sources information, and data operations outcomes
will be visualized.

9.1 Anticipated functionalities / requirements

The anticipated functionalities / requirements are described in the following tables (Table 38
- Table 40), that are compiled together with the rest of requirements of BigDataStack in D2.2.

 Id Level of detail Type Actor Priority

REQ-AV-01 System and
Software

USE ROL-04 MAN

Name Interactive and Responsive UI

Description The system should provide an interactive UI that should adapt to different
devices and displays in order to provide a proper operation of the solution
and a good user experience.

Additional
Information

Table 38 – System Requirement (1) for Adaptable Visualizations

 Id Level of detail Type Actor Priority

REQ-AV-02 System and
Software

FUNC ROL-04 MAN

Name Automatic graph selection

Description Appropriate graphs and reports should automatically be selected for
different data sets.

Additional
Information

Table 39 – System Requirement (2) for Adaptable Visualizations

 Id Level of detail Type Actor Priority

REQ-AV-03 System and
Software

FUNC ROL-04 MAN

Name Live data for different data sources

Description The system should be able to display live data obtained from application
probes, resource probes and data operations probes.

Additional
Information

Adaptable selection of sources should be possible both in terms of
application, resources or data operations, as well as in terms of the datasets

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 63 of 66 bigdatastack.eu

selected and visualized per each one of these cases. Combinations should
also be enabled.

Table 40 – System Requirement (3) for Adaptable Visualizations

9.2 Specification / Design

Figure 27 depicts the most commonly used architecture for visualizing big data.

Figure 27 – Base architecture for visualizing big data

The data originate either from a Data Stream or from a Database (NoSQL or Relational). A
middleware server component consumes the data and converts them to a format suitable for
the visualization client-side library. Live update of the data is achieved through a web socket
interface between the server and the client.

Numerous alternatives are available for the data streams, with Apache Spark and Apache Flink
being the most prominent ones. Similar many options are available for the Middleware
(Node.js, Spring Boot). The client library must provide graph implementations of many types,
interactivity, responsiveness and integrations with many Javascript frameworks. State of the
art alternatives are:

 D3js [16]: Javascript library for manipulating documents based on Data. It is Open
Source software that provides great flexibility and power with the cost of requiring a
lot of effort for the implementation of every graph type. For this reason, many
wrapper libraries around it are provided;

 Highcharts [17]: Royalty-free, commercial, javascript library. Provides the
implementations of hundreds of interactive graph types that can be easily integrated
to any Javascript Application;

 Chart js [18]: Open source javascript library that provides simple yet flexible charting
for developers and designers.

9.3 Early prototype

The first prototype of Adaptable Visualizations will be a Single Page Application utilizing
Reactjs framework and Highcharts library. Diagrams with dummy data will be initially
deployed. This will allow getting feedback about the implementation and going through an
iterative development process, before data from other components are ready.

Database

Middleware
+ Web Socket

Server
Client Library

Data Stream

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 64 of 66 bigdatastack.eu

9.4 Experimental Plan

The experimental plan for validation Adaptable Visualization has as first step the
implementation of the early prototype. As stated above the early prototype will display
diagrams with dummy data. The next step will be to integrate with other components and
start receiving real data.
In terms of evaluation metrics and KPIs, the main objective will be to provide all necessary
reporting tools for acquiring a complete picture of BigDataStack’s runtime operation.

9.5 Next steps

As the project matures, the visualization scenarios will become more concrete. The
implementation of the Adaptable Visualizations Components will proceed as follows:

 Define Visualization Scenarios
o Define connections with other components

 Connection with stream of data

 Create mock-ups with dummy data

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 65 of 66 bigdatastack.eu

10 Conclusions

This document presents the components of one of the main building blocks of BigDataStack,
the Dimensioning, Modelling & Interaction Services, along with their current design
specifications and their initial implementation and status. For every component, the
anticipated functionalities along with its architecture are presented. Information is also
provided, on component level, regarding the next steps and the experimental plan. Real-time
ship management UC is used to validate the different releases of the components for the
initial prototypes, while all project use cases will be exploited for the next iterations of the
designs and prototypes of the dimensioning, modelling and interacting services of
BigDataStack.

 Project No 779747 (BigDataStack)

 D5.1 – WP5 Scientific Report and Prototype Description - Y1

 Date: 30.11.2018

 Dissemination Level: Public

 page 66 of 66 bigdatastack.eu

References

[1] https://nodered.org/
[2] https://github.com/node-red/node-red
[3] X. Tian et al., "BigDataBench-S: An Open-Source Scientific Big Data Benchmark

Suite," 2017 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), Lake Buena Vista, FL, 2017, pp. 1068-1077.

[4] Ivanov et al., “Big Data Benchmark Compendium", Performance Evaluation and
Benchmarking: Traditional to Big Data to Internet of Things, Springer International
Publishing, 2016, pp. 135-155.

[5] https://www.cs.waikato.ac.nz/ml/weka/
[6] https://spark.apache.org/mllib/
[7] https://www.gnu.org/software/octave/
[8] https://www.ansible.com/
[9] https://www.dropwizard.io/
[10] Pavel Brazdil, Christophe G. Giraud-Carrier, Carlos Soares, Ricardo Vilalta: Metalearning

- Applications to Data Mining. Cognitive Technologies, Springer 2009, ISBN 978-3-540-
73262-4, pp. I-X, 1-176

[11] METAL: A meta-learning assistant for providing user support in machine learning and
data mining. ESPRIT Framework IV LTR Reactive Project Nr. 26.357, 1998-2001.
http://www.metal-kdd.org.

[12] K. Morik and M. Scholz. The MiningMart approach to knowledge discovery in databases.
In N. Zhong and J. Liu, editors, Intelligent Technologies for Information Analysis, chapter
3, pages 47–65. Springer, 2004. Available from http://www-ai.cs.uni-
dortmund.de/MMWEB.

[13] Kate Smith-Miles: Cross-disciplinary perspectives on meta-learning for algorithm
selection. ACM Comput. Surv. 41(1): 6:1-6:25 (2008).

[14] Mustafa V. Nural, Hao Peng, John A. Miller: Using meta-learning for model type
selection in predictive big data analytics. BigData 2017: 2027-2036.

[15] Daniel Gomes Ferrari, Leandro Nunes de Castro: Clustering algorithm selection by meta-
learning systems: A new distance-based problem characterization and ranking
combination methods. Inf. Sci. 301: 181-194 (2015).

[16] https://d3js.org/
[17] https://www.highcharts.com/
[18] https://www.chartjs.org/

https://nodered.org/
https://github.com/node-red/node-red
https://www.cs.waikato.ac.nz/ml/weka/
https://spark.apache.org/mllib/
https://www.gnu.org/software/octave/
https://www.ansible.com/
http://www.metal-kdd.org/
http://www-ai.cs.uni-dortmund.de/MMWEB
http://www-ai.cs.uni-dortmund.de/MMWEB
https://d3js.org/
https://www.highcharts.com/
https://www.chartjs.org/

