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1 Executive Summary 

BigDataStack delivers a complete high-performant stack of technologies addressing the needs 
of data operations and applications. BigDataStack holistic solution incorporates approaches 
for data-focused application analysis and dimensioning, and process modelling towards 
increased performance, agility and efficiency. A toolkit allowing the specification of analytics 
tasks in a declarative way, their integration in the data path, as well as an adaptive 
visualization environment, realize BigDataStack’s vision of openness and extensibility. 

The main objective of the dimensioning, modelling and interaction services building block of 
BigDataStack is to provide all the interaction mechanisms including the Process Modelling 
framework, the Data Toolkit, the Dimensioning Workbench, and the Visualization 
environment. These are required in order to exploit the added-value services of the 
“underlying” BigDataStack data-driven infrastructure management and the Data as a Service 
offerings. 

The Process Modelling Framework will allow for declarative and flexible modelling of process 
analytics. Functionality-based process modelling will be concretized to technical-level process 
mining analytics, while a feedback loop will be implemented towards overall process 
optimization and adaptation.  

The Process Mapping component targets the problem of identifying or recommending the 
best algorithm from a set of candidate algorithms, given a specific data analysis task, in an 
automatic way. Its role is to automatically map a step of a process to a specific algorithmic 
instance from a given pool of algorithms, thereby achieving “process mapping”. 

The Data Toolkit facilitates Data Scientists in building operational analytic workflows by 
means of data pipelines through Directed Acyclic Graphs (DAGs). 

The Application Dimensioning Workbench aims to provide insights regarding the required 
infrastructure resources for the data services and application components (micro-services), 
linking the used resources with load and expected QoS levels. 

Finally, Adaptable Visualizations will present graphs and reports of data and analytics 
outcomes (as well as monitoring information from application, resources and data levels) in 
an adaptive and interactive way. 

Thus, the current deliverable presents the vision for the Dimensioning, Modelling and 
Interaction Services of BigDataStack, the context, the goal and the main services realizing this 
vision. Moreover, the corresponding roles interacting with these services and the design of 
the proposed solution are discussed in the current document. The deliverable contains the 
use cases to be supported and the expected progress until M18, while it also describes in 
detail the different components, along with the corresponding requirements and the next 
steps. Updated versions of this report are planned for M23 and M34 respectively. 
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2 Introduction 

2.1 Relation to other deliverables 

The current deliverable, the first BigDataStack deliverable concerning Dimensioning, 
Modelling and Interaction Services (D5.2 and D5.3 are scheduled for M23 and M34 
respectively) is related to several other BigDataStack deliverables in a direct or indirect way.  

D2.1 (State of the art and Requirements analysis - I) identifies and specifies the technical 
requirements for BigDataStack both through use case (UC) providers and technology 
providers, while D2.4 (Conceptual model and Reference architecture - I) provides information 
about the key functionalities of the overall architecture, the interactions between the main 
building blocks and their components, along with a first version of the internals of these 
components regarding research approaches to be realised during the course of the project. 

We should also state that the Requirement Tables of the corresponding components of the 
Dimensioning, Modelling and Interaction Services (Tables 3-33 and 38-40) are compiled 
together with the rest of requirements of BigDataStack in D2.2 (Requirements & State of the 
Art Analysis - II); they are included in this document for the reader’s convenience. 

Finally, D3.1 (WP3 Scientific Report and Prototype description - Y1) and D4.1 (WP4 Scientific 
Report and Prototype description - Y1) are the deliverables which, in combination with D5.1, 
present the current technical status (dealing with Data-driven Infrastructure Management 
and Data as a service respectively) of BigDataStack project. 

 

2.2 Document structure 

Section 3 gives an overview of the various components, while Section 4 provides information 
for the experimental setting and implementation roadmap. Sections 5 to 9 follow the data 
flow in the dimensioning, modelling and interaction services’ block of BigDataStack 
architecture and are dedicated to each one of the different components, namely Process 
Modelling framework, Process Mapping, Data Toolkit, Application Dimensioning Workbench 
and Adaptable Visualizations.  
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3 Solution Architecture 

This section describes the technical solution for the Dimensioning, Modelling & Interaction 
Services of BigDataStack. Firstly, it gives a general overview of the BigDataStack capabilities 
(context, goal, main functions or services); secondly, it enumerates the platform roles 
interacting with these services; and finally, it describes the design of the proposed solution. 

 

3.1 Vision  

BigDataStack offerings are depicted through a full stack aiming to facilitate the needs of data 
operations and applications (all of which tend to be data-intensive) in an optimized way. The 
BigDataStack core platform capabilities are depicted in Figure 1 and further analysed in D2.4. 

 

 

Figure 1 – BigDataStack core platform capabilities (extracted from D2.4) 

These six BigDataStack core platform capabilities are envisioned to achieve the business goals 
or expectations from the different stakeholders. Dimensioning Workbench, Process 
Modelling, Data Toolkit and Data Visualization are the four core offerings of BigDataStack 
platform that are discussed in the present deliverable.  
The goal of Data Visualization is to present graphs and reports of data and analytics outcome 
in an adaptive and interactive way, while the Data Toolkit facilitates BigDataStack users build 
operational analytic workflows by means of data pipelines through Directed Acyclic Graphs 
(DAGs). In the case of Process Modelling, the goal is to provide a framework that will allow 
for declarative and flexible modelling of process analytics, while the Dimensioning 
Workbench will enable the dimensioning of applications in terms of predicting the required 
data services, their interdependencies with the application micro-services and the necessary 
underlying resources. 
These capabilities are mainly engaged in Entry and Dimensioning Phases of BigDataStack (see 
D2.4).  

During the Entry Phase:  
1. Data owners ingest their data in the BigDataStack-supported data stores through a 

unified API.  
2. Given the stored data, the Business Analysts design and evaluate their business 

processes, using the user interface (UI) provided by the Process Modelling framework 
and the available list of “generic” processes. The compiled business workflow is 
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mapped to concrete tasks through the Process Mapping mechanism (incorporated in 
the Process Modelling framework). 

3. The graph of services is made available to the Data Scientists through the Data 
Toolkit, where they can also specify their preferences and constraints.  

4. The Data Scientists are also able to insert their tailor made Machine Learning (ML) 
algorithms facilitated by automated and managed processes, e.g. CRUD-ers will be 
made available on the support of this purpose. 

 
The output of the Entry Phase is a playbook descriptor that is passed to the Application 
Dimensioning Phase in order to identify the resource needs for the services. 
 
During the Dimensioning Phase (Figure 2): 

1. The input from the Data Toolkit is used to define the composite application needs 
with relation to the required data services;  

2. The identified/required data services are dimensioned (as well as all the application 
components, regarding their infrastructure resource needs), by exploiting a load 
injector generating different loads, to benchmark the services and analyse their 
resources and data requirements (e.g. volume, generation rate, legal constraints, 
etc.). 

 

 

Figure 2 - Dimensioning Phase 

The output of the dimensioning phase is an elasticity model, i.e. a mathematical function that 
describes the mapping of the input parameters (such as workload and QoS) to needed 
resource parameters (such as the number of VMs, bandwidth, latency etc.). 

 

3.2 Platform Roles 

Table 1 lists the BigDataStack roles relevant to Dimensioning, Modelling & Interaction Services 
(see the complete list of roles in Deliverable D2.1). 

 

Id Name Description 

ROL-02 Data Scientist The process model is made available to the data scientist 
through the Data Toolkit. BigDataStack offers the Data Toolkit 
to enable data scientists both to easily ingest their analytics 
tasks, and to specify their preferences and constraints to be 
exploited during the dimensioning phase regarding the data 
services that will be used (for example preferences for the data 
cleaning service). 
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ROL-03 Business 
Analysts 

BigDataStack offers the Process Modelling Framework allowing 
business users to model their functionality-based business 
processes and optimize them based on the outcomes of 
process analytics that will be triggered by BigDataStack. The 
business analyst can search processes from the list of available 
processes, create a flow of processes and set objectives for the 
overall flow or per process. The visual analytical reports are 
made available to the business analyst through the 
visualization layer. 

ROL-04 Application 
Engineers and 
Application 
Service 
Owners 

The updated model is made available to the application owner 
/ engineer through the Application Dimensioning Workbench. 
BigDataStack offers the Application Dimensioning Workbench 
to enable application owners and engineers to experiment 
with their applications and dimension it in terms of its data 
needs and data-related properties.  

Table 1 – BigDataStack Platform roles relevant to Dimensioning, Modelling & Interaction Services 

 

3.3 Design 

The conceptual view of Dimensioning, Modelling & Interaction Services consists of four main 
blocks, as summarized in the following paragraphs: 

1. Process Modelling 
The Process Modelling Framework allows for declarative and flexible modelling of 
process analytics, while the Process Mapping component targets the problem of 
identifying or recommending the best algorithm from a set of candidate algorithms. 

2. Data Toolkit  
The main objective of the data toolkit is to design and support data analysis workflows. 
It facilitates Business Analysts and Data Scientists in building operational analytic 
workflows, while it also interacts with the Adaptable Visualizations component.  

3. Dimensioning Workbench  
The Application Dimensioning Workbench (ADW) aims to provide insights regarding 
the required infrastructure resources for the data services and application 
components (micro-services), linking the used resources with load and expected QoS 
levels. 

4. Adaptable Visualizations  
Adaptable Visualizations component will present graphs and reports of data and 
analytics outcome in an adaptive and interactive way. 

As it is depicted in Figure 3, typical Big Data flow starts from the Process Modelling Block 
(Process Modelling and Process Mapping), then the defined processes are further concretized 
through the Data Toolkit and its output will be passed to the Dimensioning Workbench. The 
analytics insights from the Data Toolkit feed the Adaptable Visualisations component. 
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Figure 3 – Dimensioning, Modelling and Interaction Services of BigDataStack 
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4 Implementation and Experimentation 

This section introduces the UC and scenarios to be supported in the incremental development 
of the solution. 

4.1 Experimental Setting 

This section introduces the use cases and the scenarios we are using to validate the different 
implementation increments (releases) of the Dimensioning, Modelling & Interaction Services. 
The BigDataStack use case we have chosen to test the different components presented in this 
deliverable is the Real-time Ship Management (RSM): Maintenance and spare parts 
inventory planning & dynamic routing (see deliverable D2.1 section 4.1), provided by 
DANAOS. Some of the highlights of the use case are (please refer to D2.1 for the full 
description): 

 Two key challenges in the ship management domain: (i) predictive maintenance 
combined with spare parts inventory planning, and (ii) dynamic routing;  

 DANAOS, a leading international maritime player with more than 60 containerships, 
transporting millions of containers, sailing millions of miles to thousands of ports, and 
consuming millions of tons of fuel oil, which is a partner of BigDataStack, provides the 
consortium with real data in order to test the various components; 

 Two different but complementary scenarios have been defined in the framework of 
RSM: (i) monitoring and predictive maintenance and (ii) requisition of a spare part and 
dynamic routing to the closest port where this part is available. 

All the components of Dimensioning, Modelling and Interaction Services are involved in the 
different stages of RSM.  
Process Modelling Framework allows an analyst to create predefined rules (rules engine 
component) and to actualise the required analytic tasks, through the definition of the 
business processes and the associated objectives, making available a high-level description of 
the required processes. Subsequently, the system, using Process Mapping component, will 
select from the available ML algorithms, the best performing for DANAOS dataset. 
The output of this step is a workflow graph, containing the mappings of business processes 
to algorithms.  
The processes included in this workflow graph will be further concretized through the Data 
Toolkit. Using the Data Toolkit, one can define the data ingestion and the necessary curation 
tasks for DANAOS dataset (weather data, tracks from vessels) and configure the runtime 
resources. Data Toolkit can also validate the end-to-end business objectives through the 
analytics insights feeding the Adaptable Visualisations. 
The output of this step is a Playbook representing the grounded workflow for each process. 
It will be passed to the Dimensioning Workbench to identify the necessary resources for each 
node of the graph. The Pattern Generator subcomponent of the Application Dimensioning 
Workbench (ADW) is not explicitly linked to the particular UC; it forms part of the underlying 
application deployment backbone that supports all UCs of BigDataStack in order to identify 
how to deploy the user’ s application onto the cloud infrastructure. On the other hand, 
although Dimensioning core applies to the generic data services included in BigDataStack, it 
can be adapted to a specific UC, specifically with relation to aspects of workload, e.g. RSM 
contains tables that have more than 100 columns (extended description can be found at 
Section 8.4 ). 
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4.2 Implementation Roadmap 

Table 2 summarises the plan for Dimensioning, Modelling & Interaction Services. M14 is the 
date of the next planned integration meeting, while M18 (June 2019) is a tentative date of 
the mid-project review. 

 M12 M14 M18 

Process 
Modelling 
Framework 

Early Prototype Use cases modelled, 
first round of 
feedback, finalization 
of specifications and 
interconnection 
requirements. 
Draft version using 
the implemented 
custom tool (see 
Section 5.3). 

Updated working 
version, using the 
implemented custom 
tool. 

Process Mapping First version, 
containing basic 
functionality, serving 
as proof-of-concept 

Improved version, 
including more 
thorough 
investigation of meta-
features that can be 
exploited for meta-
learning 

Integrated version of 
Process Mapping with 
the Process Modelling 
Framework, subject 
to further 
improvements of its 
internal functionality 
in the 2nd half of the 
project 

Data Toolkit Basic analytic 
workflows without 
validation  

Simple end-to-end 
analytic workflows 
integrated with UIs, 
delivering valid 
Directed Acyclic 
Graphs (DAGs) with 
simple validation 
rules 

End-to-end analytic 
workflows integrated 
with UIs, delivering 
valid DAGs with 
validation rules 
tailored to the UCs 

Application 
Dimensioning 
Workbench 

First version with 
containerized and 
configurable 
benchmark tools, 
initial version of the 
UIs 

Integration between 
ADW components 
and external ones of 
BigDataStack 

Benchmark runs with 
UC specific workloads 
and service 
configurations 
through the UI 
functionality 

Adaptable 
Visualisations 

Specifications Interfaces with 
different components 
as data sources to be 
visualized 

Early prototype with 
sample data 

Table 2 – Implementation Roadmap for Dimensioning, Modelling & Interaction Services 
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5 Process Modelling framework 

The Process Modelling Framework will allow for declarative and flexible modelling of process 
analytics. Functionality-based process modelling will then be concretized to technical-level 
process mining analytics, while a feedback loop will be implemented towards overall process 
optimization and adaptation.  

 

5.1 Anticipated functionalities / requirements 

The anticipated functionalities / requirements are described in the following tables (Table 3 -
Table 10), that are compiled together with the rest of requirements of BigDataStack in D2.2. 

 

 Id1 Level of detail2 Type3 Actor4 Priority5 

REQ-PMF-01 System and 
Software 

USE ROL-04 MAN 

Name UI/UX experience 

Description The system should guide the users to complete the business diagram / 
flow with easy steps. It should clearly indicate what connections – 
interactions are possible and provide comprehensive error messages. 

Additional 
Information 

 

Table 3 – System Requirement (1) for Process Modelling Framework 

 Id Level of detail Type Actor Priority 

REQ-PMF-02 System and 
Software 

FUNC ROL-04 MAN 

Name Multi-user support 

Description Multiple users should be able to use the Process Modelling Framework and 
create diagrams at the same time. It should also support different roles: 
business analysts and data analysts. A business analyst will define a process 
in a higher level and a data analyst will provide the concrete 
implementations 

Additional 
Information 

 

Table 4 – System Requirement (2) for Process Modelling Framework 

                                                 
1Identifier: To be used in D2.2 to allow for the correct traceability of requirements. 
2Level of detail: Following the use of ISO/IEC/IEEE 29148:2011, we use the following levels: Stakeholder, System and Software (i.e., 
technology details). 
3Type: Types of requirements are functional: FUNC (function), DATA (data); and non-functional: L&F (Look and Feel Requirements), USE 
(Usability Requirements), PERF (Performance Requirements), ENV (Operational/Environment Requirements), and SUP (Maintainability and 
Support Requirements).  
4Actor: It needs to be either one of the BigDataStack platform roles identified in Section 3.2 or a system actor, e.g. another component or 
service. 
5Priority: Requirements can have different priorities: MAN (mandatory requirement), DES (desirable requirement), OPT (optional 
requirement), ENH (possible future enhancement). 
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 Id Level of detail Type Actor Priority 

REQ-PMF-03 System and 
Software 

FUNC Business Analyst MAN 

Name Process workflow creation 

Description A business analyst should be able to create a process workflow in a higher 
level. The analyst will select nodes from a catalogue and using a drag-and-
drop interface will link them together to create the flow. 

Additional 
Information 

 

Table 5 – System Requirement (3) for Process Modelling Framework 

 Id Level of detail Type Actor Priority 

REQ-PMF-04 System and 
Software 

FUNC Data Analyst MAN 

Name Process workflow configuration 

Description The data analyst should be able to configure a process workflow with all the 
required details. The data analyst will set up the nodes parameters and 
define the rules for moving from one node to another. 

Additional 
Information 

 

Table 6 – System Requirement (4) for Process Modelling Framework 

 Id Level of detail Type Actor Priority 

REQ-PMF-05 System and 
Software 

FUNC Data Analyst MAN 

Name Process workflow export 

Description The data analyst should be able to export the process workflow in 
BigDataStack format. 

Additional 
Information 

The default format of the export will be in JSON. It will include information 
regarding the flows and their interconnections. Alternative export formats 
(YAML, Dockerfile) will be considered based on the requirements of other 
components. The user should be able to select the appropriate export 
format. 

Table 7 – System Requirement (5) for Process Modelling Framework 

 Id Level of detail Type Actor Priority 

REQ-PMF-06 System and 
Software 

FUNC Business Analyst MAN 

Name Support for end-to-end (in terms of process workflow) objectives 

Description The business analyst should be able to defile end-to-end objectives. These 
objectives do not apply to a single process, but to the workflow as a whole. 
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Additional 
Information 

 

Table 8 – System Requirement (6) for Process Modelling Framework 

 Id Level of detail Type Actor Priority 

REQ-PMF-07 System and 
Software 

FUNC Business Analyst MAN 

Name Process constraints 

Description The business analyst should be able to set apply constraints per node / 
process of the workflow 

Additional 
Information 

 

Table 9 – System Requirement (7) for Process Modelling Framework 

 Id Level of detail Type Actor Priority 

REQ-PMF-08 System and 
Software 

FUNC Business Analyst MAN 

Name Edge constrains 

Description The business analyst should be able to apply constraints / parameters per 
edge (i.e. connections between processes of the workflow). 

Additional 
Information 

 

Table 10 – System Requirement (8) for Process Modelling Framework 

 

5.2 Specification / Design  

The Process Modelling Framework prototype has been initially implemented by utilizing as a 
baseline Node-RED [1]. Node-RED is an open-source tool for creating and deploying processes 
with little or no code at all. It runs as a web server and provides a drag-and-drop interface for 
designing the process. When the process is ready, it can be deployed at the Node-RED server, 
by clicking Deploy. Its main use case is Internet of Things (IoT) and home automation. 
 
The Process Modelling Framework prototype is initially built upon Node-RED functionalities 
and provides its own set of palettes. The available nodes in the palette should come from the 
Process Catalogue and be able to support all use cases. Instead of deploying a flow, it is easier 
to export a flow into the format required by other BigDataStack components. 
 
The following scenario should be supported: 

1. Search processes from the list of available processes in the process modelling 
framework 

a. Search by functionality 
b. Search by name 

2. Create flow of processes 
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a. Add processes through a drag & drop feature 
b. Add processes following the search performed 
c. Link processes (create flows) 

3. Set objectives / constraints / parameters 
a. Set objectives for the overall flow 
b. Set objectives per process 
c. Set parameters / rules that (when true) enable passing from one process to 

another in the flow 
4. Enable parameters validation (e.g. if the business person sets an objective of data 

cleaning to be finished in less than 0.00001sec) 
5. Export flow in a suitable format 

 

5.3 Early prototype 

An early prototype using Node-RED has been implemented. It is a fork of Node-RED GitHub 
project [2] and can run locally using node.js and npm. A Dockerfile is also provided so that it 
can be run inside a Docker container. 

The prototype provides its own BigDataStack palette with some sample nodes that can be 
used to describe a BigDataStack workflow. Every node can be parameterized by double-
clicking on it and editing its properties. Currently only exporting the flow to Node-RED’s 
internal JSON format is supported. Node-RED palette and editing node are shown in Figure 4 
and Figure 5 respectively. 

It should be noted that a later version of the framework will be based on custom development 
and not re-use/extend an existing tool. Node-RED allows us to quickly create a prototype and 
engage all required members early enough, but it may not be adequate for the 
implementation of all required features. Towards this end, a custom tool will be 
implemented. 

 

 

Figure 4 - Node-RED 
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Figure 5 - Node-RED Editing node 

 

5.4 Use case mapping 

5.4.1 RSM scenario 

Figure 6 depicts the RSM scenario as defined in the Process Modelling Framework Early 
Prototype. 

 

 

Figure 6 - RSM Scenario 

 

5.5 Experimental Plan 

In order to evaluate the Process Modelling Framework an experimental plan has been 
created. The goal of the first prototype is to initially model the scenarios of the use cases. 
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Both the Business Analyst and the Data Analyst should have all the required tools in their 
hands in order to model the scenarios. It should be validated that it is possible to use a drag-
and-drop interface to model BigDataStack use cases and then export the model to an 
appropriate output format. The next step will be to implement a custom tool that will be able 
to load processes/nodes dynamically, integrate with recommendation engines and support 
advanced validation. 
In terms of evaluation metrics and KPIs, the main objectives are: 

 Successful modelling of all use cases 

 Good UI/UX experience with emphasis on validation 

 Seamless integration with other components 
 

5.6 Next steps 

Towards a complete Process Model Framework implementation, the following steps need to 
be completed: 

 Complete palette for RSM scenario. All nodes should support the appropriate 
configuration and event parameters; 

 Complete palette for Connected Consumer (CC) - ATOS WORDLINE UC scenario. 
Similar to RSM scenario full configuration should be possible; 

 Export workflow to BigDataStack process format. 
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6 Process Mapping 

The Process Mapping component targets the problem of identifying or recommending the 
best algorithm from a set of candidate algorithms, given a specific data analysis task, in an 
automatic way. Its role is to automatically map a step of a process to a specific algorithmic 
instance from a given pool of algorithms, thereby achieving “process mapping”. 

 

6.1 Anticipated functionalities / requirements 

The Process Modelling framework is used to create process models that contain different 
types of tasks, including data analysis tasks. In order to obtain an executable program from 
the process model, process mapping is required, which maps steps of the process model to 
concrete implementations. In some cases, this mapping is straightforward and can be easily 
derived. However, in other cases, most notably in machine learning (ML) tasks, a given task 
can be implemented using different alternative algorithms. Quite often, it is hard for ML 
experts to select the best performing algorithm, and even more so for the non-expert user. 
Consequently, there is a need for a system that identifies the most promising ML algorithm 
for the given task. 
Hence, the key functionality targeted by the Process Mapping component is stated as follows. 
Given a machine learning task, a dataset, and a set of available ML algorithms that can handle 
the given task, the component selects (or recommends) the subset of ML algorithms with best 
performance. Essentially, the problem can be cast as a search problem, where the search 
space consists of the available ML algorithms, and the objective is to identify the best 
performing algorithms.  
Obviously, covering all possible types of processes is a tedious task that goes beyond this 
project. In fact, previous EU projects, most notably METAL [11] and MiningMart [12], have 
focused on algorithm selection for specific problems. Instead, in the context of the Process 
Mapping component, the focus will be on Machine Learning tasks, since this is very important 
for the successful analysis of big data. Moreover, ML algorithm selection is challenging, 
because the connection between an ML algorithm and the characteristics of the data under 
analysis is still not well-understood. Towards this goal, the Process Mapping component 
follows a meta-learning approach [10]. We refer to [13] for a survey of the problem of meta-
learning for algorithm selection, and also to recent notable works for classification [14] and 
clustering [15] (the former having been the object of much more extensive studies). 

The anticipated functionalities / requirements are described in the following tables (Table 11-
Table 14), that are compiled together with the rest of requirements of BigDataStack in D2.2. 
 

 Id Level of detail Type Actor Priority 

REQ-DO-01 Stakeholder FUNC ROL-04 MAN 

Name Compatibility with output of Process Modelling 

Description The Process Mapping component is able to process the output of Process 
Modelling, in order to select appropriate ML algorithm(s) for specific 
Process steps. 
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Additional 
Information 

This requirement practically ascertains that the two components (Process 
Modelling and Process Mapping) are compatible and that the output of the 
first can be consumed by the second.  

Table 11 – System Requirement (1) for Process Mapping 

 Id Level of detail Type Actor Priority 

REQ-DO-02 Stakeholder FUNC ROL-04 MAN 

Name Extraction of metadata 

Description Given a dataset, extract a set of metadata that is sufficient in order to 
discover similarities between datasets, in particular regarding the 
underlying data distributions and other statistical properties. 

Additional 
Information 

The metadata should cover at least statistical and information-theoretic 
characterization of a given dataset.  

Table 12 – System Requirement (2) for Process Mapping 

 Id Level of detail Type Actor Priority 

REQ-DO-03 Stakeholder FUNC ROL-04 MAN 

Name Build and maintain a meta-knowledge repository 

Description Collect and store information about datasets, metadata, and the 
performance of ML algorithms that have been executed on the datasets. 
This information is referred to as meta-knowledge, because it is essentially 
knowledge about the learning process. This meta-knowledge repository is 
going to be used for meta-learning, which is defined as the study of 
methods that exploit meta-knowledge to obtain efficient models and 
solutions by adapting machine learning processes.  

Additional 
Information 

The meta-knowledge repository is augmented with information about the 
execution of ML algorithms on new datasets. 

Table 13 – System Requirement (3) for Process Mapping 

 Id Level of detail Type Actor Priority 

REQ-DO-04 Stakeholder FUNC ROL-04 MAN 

Name ML algorithm selection 

Description Given a machine learning task, a dataset, and a set of available ML 
algorithms that can handle the given task, select (or recommend) the subset 
of ML algorithms with best performance. 

Additional 
Information 

It assumes the availability of a pool of ML algorithms (e.g., a ML library) and 
an execution environment for running ML algorithms on different datasets 
and evaluating their result quality. 

Table 14 – System Requirement (4) for Process Mapping 
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6.2 Specification / Design  

The inputs of the Process Mapping component consist of: 

 The analysis task T (e.g., Regression, Classification, Clustering, etc.) that the user 
wishes to perform. This task is typically an individual step of a process model; 

 Additional information that is dependent on the analysis task T (e.g., the response – 
predictor variables in the case of Supervised Learning, the desired number of clusters 
in the case of Clustering, etc.); 

 A dataset D that is subject to the analysis task T. 
 
The output of the Process Mapping component is a selected algorithm Ai(T) from a set of 
available algorithms {A1, A2, …, An} that are applicable to task T, which is predicted to be the 
most suitable for executing the data analysis task T at hand. In practice, the component 
achieves mapping of steps of a Process to concrete algorithms. 
 
Figure 7 presents the design of the Process Mapping component, which is a refined version 
of the one reported in the global architecture (cf. deliverable D2.4). As already mentioned, 
the input is provided by a user that has a dataset D and needs to perform an analysis task T. 
In the first step, a descriptive model M(D) of the input dataset D is generated. This is also 
referred to as metadata. This model can be conceived as a feature vector that contains various 
data characteristics, capturing different aspects of the dataset D, and aiming at providing 
sufficient information to be able to compute similarities between models at a later step. At 
this phase in the project, the focus is on features, such as: dimensionality, intrinsic 
dimensionality, cardinality, correlation between dimensions, entropy, mutual information, 
and sparsity-related statistics. However, it is foreseen that the set of features is extensible, 
and other features can be added in later phases of the project, based on further research and 
empirical evaluation.  
 

 

Figure 7 – Design of Process Mapping 

In the second step, the Analytics Engine receives the model M(D) and attempts to discover 
similar models M(D’) of any other dataset D’ that has been processed in the past. Information 
about past models, algorithms that were executed on models, and evaluation results, is 
stored in the Analytics Repository. Discovering the most similar model M*(D’) to the given 
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model M(D) from a set of models M(D’) can be performed in different ways. One option is to 
use a properly defined similarity function that operates on two models and computes the 
similarity between them. In the case of feature vectors, potential similarity functions could 
be based on the cosine similarity, or on a weighted Euclidean distance. Another alternative is 
to learn such a similarity function, based on the data stored at the Analytics Repository, which 
can be used for training. In the example depicted in Figure 7, algorithm A1 is selected because 
it has been executed on a similar dataset to the one at hand and has produced the best result 
quality. 
 
At the final step, the Evaluator executes the selected algorithm A1 on the dataset D, evaluates 
the result using a quality metric appropriate for task T, and records this result in the Analytics 
Repository (the meta-knowledge repository), in order for this information to be available for 
future analysis tasks. 

 

6.3 Early prototype 

The overall objective is to have a first version of the prototype by M18, which will enable the 
assessment of the result quality of Process Mapping, in order to identify potential 
improvements that need to be performed in the second half of the project. In addition, even 
though big data aspects are considered in the final implementation, the current focus is on 
rapid prototyping and quick evaluation of results, to have early feedback on the underlying 
methods employed. Therefore, parts of the prototype on M12 are built using standard 
technologies (e.g., python libraries, tools such as WEKA [5], etc.). However, it is foreseen that 
the final prototype will be based on big data technologies, and already parts of the prototype 
have become big data ready. 

By M12, the early prototype of Process Mapping has focused on the following functionalities: 
(a) design and implementation of the Descriptive Model Generator, (b) designing the 
Analytics Engine, (c) rapid prototyping of the Evaluator module, and (d) building the Analytics 
Repository.  

The features extracted from the Descriptive Model Generator are critical to achieve high 
result quality. To this end, a literature survey has been conducted in order to identify which 
features and metadata can be exploited, in order to model datasets adequately and enable 
discovering similarities in a subsequent phase. The current implementation uses (i) basic 
metadata such as dimensionality and cardinality, (ii) descriptive statistics per column 
(average, mean, st.deviation), (iii) statistical tests between columns (correlation coefficient), 
and (iv) information-theoretic measures (entropy, mutual information). A partial objective of 
the early prototype is to identify the limitations of using these measures, in order to identify 
additional measures that can be exploited for data representations in the future. 

The Analytics Engine is the second critical module, as it exploits the generated descriptive 
models, in order to discover similarities between datasets. In the early prototype, the focus 
is on vector-based similarity functions that are suitable for high-dimensional representations, 
such as the cosine similarity. However, in the future, it is expected that alternative approaches 
will be considered, such as learning a similarity function by training a machine learning 
algorithm using historical data. 
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The Evaluator module aims at executing a selected algorithm on a given dataset and 
evaluating the result quality. For M12, we use off-the-shelf tools and libraries (e.g., python 
libraries, WEKA), which are easy to use. However, an instantiation of the prototype has been 
implemented in Spark’s MLlib [6], which is going to be the final platform for parallel execution 
of scalable machine learning algorithms.  

Finally, the Analytics Repository is currently implemented as a storage repository, maintaining 
data descriptors, results of algorithms execution, and quality indices for each executed 
algorithm. Later in the project, the plan is to implement this by using NoSQL technologies, in 
order to achieve scalability also at this level of the prototype, as well as to support flexibility 
in the schema and types of data and metadata that need to be maintained. 

 

6.4 Use case mapping 

Continuing on the example of Section 5, the Process Mapping component can be applied to 
the RSM UC, by selecting the mapping of a step to a ML task in an automatic way. For example, 
when the depicted pattern recognition node is used in a diagram, then its mapping to a ML 
algorithm is going to be performed automatically by the Process Mapping component. 

Furthermore, it should be clarified that the underlying mechanism of the Process Mapping 
component is independent of the actual UC, and can be applied on other UCs in BigDataStack. 

 

6.5 Experimental Plan 

For the evaluation of Process Mapping, an experimental plan has been designed aiming at a 
thorough investigation of the quality of the mapping. To this end, the initial focus will be on a 
specific sub-category of ML tasks, which contains a small set of algorithms, in order to check 
that the Process Mapping component is indeed able to provide promising results in terms of 
algorithm selection. During this phase, the extraction and exploitation of various meta-
features will be evaluated as well. In the next phase, the intention is to generalize the Process 
Mapping component to a wider category of ML tasks. This evaluation methodology is typical 
for computer science research, starting from simple and specific versions of the problem and 
moving gradually to more generalized scenarios of use. 

In terms of evaluation metrics and KPIs, the main objective of Process Mapping is to provide 
a relative ranking of the set of available algorithms, so that the most promising/suitable 
algorithm(s) for a given task can be selected. For the evaluation, our first intention is to 
compare against a baseline solution that randomly selects an algorithm from the set, in order 
to show that our method is much better than a random selection algorithm.  Second, we 
intend to measure the accuracy of algorithm selection, in comparison with an oracle that 
always selects the best algorithm(s). In addition, the gain in performance will be quantified, 
in terms of the time saved by our approach compared to the brute-force approach that runs 
all algorithms and selects the best one based on post-execution evaluation. Last but not least, 
we are going to investigate how the system improves the quality of Process Mapping, when 
the Analytics Repository is augmented with more meta-knowledge, based on more results of 
algorithm execution on new datasets.  
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6.6 Next steps 

The next steps and planned activities of Process Mapping component towards M18 are the 
following: 

 Have a prototype implementation that (a) comprises all designed modules, (b) works 
end-to-end, and (c) provides first promising results with respect to the quality of 
algorithm selection; 

 Identify potential weaknesses of the Descriptive Model Generator and the Analytics 
Engine as of M18, since these are the two most challenging modules of the 
architecture, thereby providing valuable feedback that can be exploited in the second 
half of the project for tuning the methods, optimizing performance, or trying 
alternative approaches; 

 Perform empirical evaluation using both synthetic and real-world datasets, in order 
to verify the quality and accuracy of produced results. 
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7 Data Toolkit 

7.1 Anticipated functionalities / requirements 

The Data Toolkit facilitates Business Analysts and Data Scientists build operational analytic 
workflows by means of data pipelines through Directed Acyclic Graphs (DAGs). These graphs 
consist of nodes and edges with properties where the end-user can define the starting and 
ending stage and the intermediate processing stages she wants to perform towards the 
realization of her analytic task. The pipelines enable to define the set and the sequence of the 
stages required to be executed in order to set up end-to-end Big Data analytics based on a 
framework agnostic manner. These pipelines comprise the entire data orchestration lifecycle 
coupled with the corresponding executables. This means that the end user will be only aware 
and will take care of the conceptualisation of her analytics functionality and the desired 
objectives to be achieved in an agnostic way (i.e. REST APIs for data curation, transformation, 
analytic task such as classification, clustering, etc.). For instance, a Business Analyst has access 
to a higher abstraction level (BPMN like), services and the respective UIs of her Big Data 
analytics and end-to-end application objectives. At the same time, a Data Scientist, having the 
experience and knowledge to specify more details in the workflow set up, she has also the 
ability to define connection details to the services, specific algorithm selection from a set of 
relative algorithms (through an algorithms taxonomy), parameters configuration for the 
analytics algorithms and/or performance metrics. The Data Toolkit enables end-users to 
design point-to-point Big Data pipelines through drag-and-drop tools and intuitive UIs with 
the capability to define nodes, edges and properties in both nodes and edges in order to 
realize the operation, iteration and execution of the required pipelines in an ordered way. 
The expected outcomes are to: 

 Create and handle valid data workflows by means of a managed graph creation 
process, which combine stream and batch data with the capabilities to define the 
required parameters, transformations and configuration settings per node.  

 Facilitate end-users to reduce the time that is required to design, develop and produce 
executable analytic pipelines. 

 Continuously monitor and manage pipelines performance, which is important 
especially in configuration of multiple analytic tasks with diverse requirements.   

The tables that are following (Table 15 - Table 18) describe the requirements engineering 
method specified in D2.1 and are compiled together with the rest of requirements of 
BigDataStack in D2.2. 
 

 Id Level of detail Type Actor Priority 

REQ-SY-DT-01 Software FUNC ROL-02, ROL-03 MAN 

Name Describe data mining and analysis processes through data workflows 

Description Support for the description of data mining and analysis processes, 
interconnected to each other in terms of input/output data 
streams/objects. The corresponding metadata and an algorithms taxonomy 
for the categorisation of the analytic processes, type of data and connection 
details will be used to facilitate the description of individual nodes.  
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Additional 
Information 

The playbook must be represented in the form of a descriptor (e.g. through 
a yaml file) that can be incorporated into the Dimensioning Workbench as 
well as the Dynamic Orchestrator. 

Table 15 – System Requirement (1) for Data Toolkit 

 Id Level of detail Type Actor Priority 

REQ-SY-DT-02 Software FUNC ROL-02, ROL-03 MAN 

Name Express data workflows through graphs using nodes and edges 

Description Data workflows are represented in the form of an analysis application graph 
that includes the set of individual processes as nodes of the graph along 
with their binding/dependencies in the form of virtual links (i.e. edges). The 
links may include properties representing constraints, KPIs or objectives 
which are desirable at specific analytic stage. 

Additional 
Information 

 

Table 16 – System Requirement (2) for Data Toolkit 

 Id Level of detail Type Actor Priority 

REQ-SY-DT-03 Software FUNC ROL-03 MAN 

Name Validate graph through chain-ability constraints 

Description This requirement resolves chain-ability constraints through different nodes 
in the data workflows. The target is to produce a valid graph. This is the 
reason why a set of checks will be performed to meet these prerequisites. 
If these prerequisites are not met, the graph is not considered valid. 

Additional 
Information 

 

Table 17 - System Requirement (3) for Data Toolkit 

 Id Level of detail Type Actor Priority 

REQ-SY-DT-04 Software FUNC ROL-03 MAN 

Name Link valid graphs with viable executables for Big Data analytic processes 

Description This step links the graph with the actual executable image. In order to cope 
with the problem of vendor lock-in format of the executable the container 
format has been chosen. To this end, the actual container pulling will be 
performed. 

Additional 
Information 

 

Table 18 - System Requirement (4) for Data Toolkit 

 

 

 



 
 Project No 779747 (BigDataStack) 

 D5.1 – WP5 Scientific Report and Prototype Description - Y1 

 Date: 30.11.2018 

 Dissemination Level: Public  

 

 page 28 of 66 bigdatastack.eu 

7.2 Specification / Design  

The Data Toolkit fulfils all the system requirements that are needed to deliver the 
execution engine for analytic pipelines including Spark MLlib, other Distributed Machine 
Learning frameworks and functionalities and machine learning algorithms defined by the 
end-user to support the BigDataStack UCs. This component also interacts with Application 
Dimensioning Workbench which produces metrics on the workflows’ performance and 
Process Mapping which finds the best setting between analytic tasks and the 
corresponding algorithm selection. 
The pipeline describes the flow of data from the origin system to the destination systems 
and defines how to transform the data along the way. The pipeline includes interfaces 
(high-level APIs) to execute basic data handling operations such as filtering, sampling, etc., 
feature selection and data transformations, basic statistics (e.g. mathematical 
transformations) and machine learning algorithms including classification, clustering, 
regression, collaborative filtering and frequent pattern mining. The data workflow should 
be in a serializable format adopting Data Frames (e.g. through Resilient Distributed 
Datasets (RDDs) structures) in order to support different data types (structured and 
unstructured data, text, vectors, etc.). Each node expresses a distinct processing stage and 
its output should be expressed in JSON format (or other formats if needed). To facilitate 
Dimensioning Workbench and Dynamic Orchestrator, the result of Data Toolkit is provided 
in the form of a descriptor such as a yaml file. 
Data travel through the pipeline in batches. Each stage is directly mapped into a node of 
the Directed Acyclic Graph. Origin nodes read data from the BigDataStack system or as data 
arrive in the case of real-time data streams. A proceeding node may be either a data 
curation task or a data analysis task. In the case of data curation, the task refers to filtering, 
sampling, dimensionality reduction and feature selection. Each of these tasks is correlated 
with a set of runtime parameters which can be specified at this stage or refined upon 
experimentation. In the case of an analytic task, either the type of analysis can be specified 
(e.g. classification) or the set of the algorithms (e.g. logistic regression, decision tree, 
random forest, etc.) which supports the respective analytic task. The data move from node 
to node until they reach the ending node. The ending node should feed Adaptable 
Visualizations with insights derived by this analysis pipeline.  
The Data Toolkit facilitates a workflow enactment meaning that it grounds the pipeline 
into an executable workflow. It requires a set of runtime values for its optimal 
configuration. These runtime values include end-to-end analytic task objectives, runtime 
parameters, runtime properties and runtime resources. A Business Analyst may be able to 
define a high level abstraction of the DAG along with her end-to-end business objectives in 
a BPMN like manner. A Data Scientist can define and specify, in case she knows in advance, 
more details along the analytic workflow. The analytic task objectives are related with the 
KPIs that are defined by the user coupled with each specific scenario of her UC and may 
include time constraints, requirements regarding algorithm accuracy, scalability and 
performance. The runtime parameters are parameters that the end-user defines in the 
functions triggered in the pipeline in the form of arguments in order to invoke specific 
algorithms with specific parameters. In the case of a Data Scientist, when she starts the 
pipeline, she may know in advance the parameter values to use or let to be determined 
while experimentation of iterative analytic tasks with different settings through the 
Process Mapping. The runtime parameters define values for the algorithms of the pipeline 
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or a stage of the pipeline. For example, while invoking kNN (k-Nearest Neighbors) algorithm 
for classification, either the end user sets in advance the value of k or lets to be determined 
after some cycles of experimentation based on the collected results. The runtime 
properties may include different sets of values / volumes / veracity for different datasets. 
The runtime resources include configuration regarding the number of CPUs, RAM, the 
number of processing nodes and can be set in an end-to-end workflow execution scenario 
by the user and/or updated by the Dimensioning Workbench.  
The end-user can also inject her/his own library, analytic function or script triggered at 
specific stages of the pipeline. This is realized by defining at each node / stage all the 
configuration that is required (e.g. connection details, APIs, etc.) in order to invoke a 
specific image, procedure or task along with the respective details if needed. 
The pipelines can be saved and loaded by the Catalogue of Predictive Analytics to facilitate 
end-users use and re-use already existing analytic workflows, jobs and topologies. Also, the 
support of Kubernetes enables to execute scalable workload with time elasticity 
constraints. 
In Figure 8, we present the high-level functionalities of the Data Toolkit in a UML 
Component diagram including both end-users, i.e. Business Analyst and Data Scientist. 
 

 

Figure 8 – UML Diagram  

 

7.3 Early prototype 

The early prototype of the Data Toolkit includes the different services, wrappers, APIs and 
tools that consist the BigDataStack solution towards the workflows enactment through the 
automation of Big Data analytics. The development and deployment of the services is 
currently a running task with an early version of the Data Toolkit to be expected in M18. In 



 
 Project No 779747 (BigDataStack) 

 D5.1 – WP5 Scientific Report and Prototype Description - Y1 

 Date: 30.11.2018 

 Dissemination Level: Public  

 

 page 30 of 66 bigdatastack.eu 

the following, we present some screenshots exposing the current functionalities of the early 
prototype of Data Toolkit. 

Figure 9 presents an indicative UI where the end-users can register their own analytic 
processes, provide a short description and create their own analytics palette.  

 

 

Figure 9 – Registration of different Analytic Processes 

Figure 10 demonstrates an indicative example of composing an analytic process by fulfilling 
some prerequisites (i.e. constraints), where a php component requires a sql interface and has 
the constraint to be connected with a MariaDB instance.  
 

 

Figure 10 – Composition of an indicative Analytic Process 
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To produce an executable graph a set of validation steps and dependencies resolution will be 
executed in the background to facilitate end users correctly set up their own analytic 
processes including: a) check executable prerequisites; b) fetch corresponding images; c) wait 
until all dependencies are resolved and d) register data workflow upon health-check passes. 
Figure 11 presents an indicative deployment of an executable graph through the Data Toolkit 
along with its log. 

 

 

Figure 11 – Steps performed towards the creation of an executable graph 

 

7.4 Use case mapping 

The Business Analyst and/or the Data Scientist use the Data Toolkit, to perform a series of 
tasks related to the concretization of the stages incorporated into the nodes and the edges 
of the Directed Acyclic Graph such as: 

 Identifying the end-to-end business objectives in terms of specifying KPIs and criteria 
for the evaluation of the UC scenarios; 

 Defining the data source bindings from where the datasets related to the task will be 
ingested; 

 Defining any data curation tasks (i.e. data cleaning, feature extraction, data 
enrichment, data sampling, data aggregation, Extract-Transform-Load (ETL) 
operations) necessary for the algorithms and the related steps; 

 Configuring and parametrizing the runtime resources, parameters and properties 
related with the analytics tasks and the respective algorithms; 

 Validating the end-to-end business objectives through the analytics insights feeding 
the Adaptable Visualisations. 

In Figure 12, we map the functionalities of the Data Toolkit with an indicative analytics 
scenario of RSM UC.  
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Figure 12 – Mapping of Data Toolkit with RSM UC 

In Figure 13, we map the functionalities of the Data Toolkit with an indicative analytics 
scenario of Connected Consumer (CC) UC.  

 

Figure 13 – Mapping of Data Toolkit with Connected Consumer (CC) UC 
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7.5 Experimental Plan 

The Experimental Plan regarding the Data Toolkit includes to firstly setting up an end-to-end 
analytic case by firstly exploiting the data provided by the UC partners. This involves some 
indicative and simple analytic end-to-end application scenarios including basic algorithms and 
functionalities either for RSM UC or CC UC. The task involves providing the API services and 
the data orchestration to deploy valid Big Data and Machine Learning pipelines.  
This plan also includes diverse configuration, mixing and matching ML technologies and 
algorithms ingested by the Data Scientists to validate Data Toolkit efficiency, diversity and 
applicability in an application agnostic manner which is independent from specialised 
frameworks. 
 

7.6 Next steps 

Particular attention will be drawn around the following topics: specification of valid DAGs and 
tools for online tractability of misaligned or mis-defined pipelines, which data format should 
be used to manage different pipelines with diverse analytic requirements, how to put in 
interaction and communication of BigDataStack different components and external tools.  
As a next step of the work performed, it will be the conceptualization of the Data Toolkit 
initiated by the Architecture to be reflected and deployed in the BigDataStack environment 
as a tool of workflows enactment which defines and deploys valid, orchestrated and 
executable Big Data analytic tasks. The UCs also facilitate to address the main functionalities 
and deployment considerations in respect to the requirements expressed. 
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8 Application Dimensioning Workbench 

As indicated in D2.4, the Application Dimensioning Workbench aims to provide insights 
regarding the required infrastructure resources for the data services and application 
components (micro-services), linking the used resources with load and expected QoS levels. 
To this end, it needs to cater for both cases of resources needed, creating 
prediction/correlation models between the application/service related information (such as 
KPIs and workload, parameters of the data service etc.) and the used resources to be able to 
provide recommendations towards the deployment mechanisms. Benchmarking against 
these services is an option that may help in concentrating the original dataset that is needed 
for the creation of such supervised models, as well as historical data from previous runs. The 
general architecture of ADW appears in the following figure from D2.4, broken down to two 
main subcomponents, the Pattern Generator and the Dimensioning Core. Following, details 
on the two subcomponents are given ([3], [4]). 

Furthermore, in order to gather sufficient data for model training, a benchmarking phase is 
designed, where several configurations are tested under extreme, regulated circumstances. 
From the information obtained in the execution of this component, the system obtains 
knowledge on the most suitable configurations for the dimensioning phase. While 
bibliography already contemplates the existence of different suites for Big Data 
benchmarking, these cannot be used for the BigDataStack project, given that they are 
designed for very specific workflows or cannot be adapted for this project ([3], [4]). Thus, in 
BigDataStack project it will be necessary to run different benchmarks adapted to the UCs, 
both in terms of workloads and needed QoS metrics.  

 

 

Figure 14 -Generic Information flow for ADW from D2.4 

 

 

 

 



 
 Project No 779747 (BigDataStack) 

 D5.1 – WP5 Scientific Report and Prototype Description - Y1 

 Date: 30.11.2018 

 Dissemination Level: Public  

 

 page 35 of 66 bigdatastack.eu 

8.1 Anticipated functionalities / requirements 

8.1.1 Pattern Generator  

The aim of pattern generation is to define the different ways that a user’s application might 
be deployed on available cloud infrastructure. Prior to pattern generation, the user has 
defined in a conceptual manner what their application is comprised of and how the different 
components of that application interact. It is the job of pattern generation to map this 
conceptual view of the application into concrete specifications for how the application 
components can be physically deployed.  

Given the wide variety of hardware available on most cloud platforms, there are potentially 
a very large number of deployment configurations for a user’s application. Each deployment 
configuration may place application components on different machine types for instance. We 
refer to a specific deployment configuration for a user application as a candidate deployment 
pattern. In effect, pattern generation aims to produce a set of candidate deployment patterns 
for a user’s application that span the range from low-cost/single machine deployments up-to 
high-cost/high-performance computing deployments. 

Later components within the Application Dimensioning Workbench and subsequently the 
Realization system within BigDataStack will automatically analyse these candidate 
deployment patterns, as well as examine their suitability given the user requirements and 
preferences, with the end-goal of selecting the best one that will fit the user’s needs. 

The anticipated functionalities / requirements are described in the following tables (Table 19-
Table 24), that are compiled together with the rest of requirements of BigDataStack in D2.2. 

 

 Id Level of detail Type Actor Priority 

REQ-T5.1-PG-01 System and 
Software 

FUNC ROL-04 MAN 

Name Ingest Playbook 

Description The Data Toolkit sends to the Pattern Generation a Playbook containing 
the graph of the user’s application. The Pattern Generation receives the 
playbook and initiates creation of candidate deployment patterns. 

Additional 
Information 

 

Table 19 – System Requirement (1) for Pattern Generator 

 Id Level of detail Type Actor Priority 

REQ-T5.1-PG-02 System and 
Software 

FUNC ROL-04 MAN 

Name Load Hardware Directory (File) 

Description To produce candidate deployment patterns, Pattern Generation needs to 
know what hardware is available to deploy the components of the user’s 
application upon. Initial versions will load this information from a static 
file. 
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Additional 
Information 

 

Table 20 – System Requirement (2) for Pattern Generator 

 Id Level of detail Type Actor Priority 

REQ-T5.1-PG-03 System and 
Software 

FUNC ROL-04 MAN 

Name Load Hardware Directory  

Description To produce candidate deployment patterns, Pattern Generation needs to 
know what hardware is available to deploy the components of the user’s 
application upon.  

Additional 
Information 

 

Table 21 – System Requirement (3) for Pattern Generator 

 Id Level of detail Type Actor Priority 

REQ-T5.1-PG-04 System and 
Software 

FUNC ROL-04 MAN 

Name Service-Hardware Mapping (1-1) 

Description The main process in Pattern Generation is mapping the different 
components (services) to potentially suitable hardware. The first version 
of this functionality produces only 1-1 mappings, i.e. one service is 
mapped to one piece of hardware (e.g. machine). 

Additional 
Information 

 

Table 22 – System Requirement (4) for Pattern Generator 

 Id Level of detail Type Actor Priority 

REQ-T5.1-PG-05 System and 
Software 

FUNC ROL-04 MAN 

Name Service-Hardware Mapping (1-M) 

Description The main process in Pattern Generation is mapping the different 
components (services) to potentially suitable hardware. The second 
version of this functionality produces only one to many mappings, i.e. one 
service can be mapped to multiple piece of hardware (e.g. spread over 
multiple machines). This may be advantageous in cases such as were a 
single ‘big’ machine is more expensive than multiple smaller machines. 

Additional 
Information 

 

Table 23 – System Requirement (5) for Pattern Generator 
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 Id Level of detail Type Actor Priority 

REQ-T5.1-PG-06 System and 
Software 

FUNC ROL-04 DES 

Name Service-Hardware Mapping (M-1/Pods) 

Description The main process in Pattern Generation is mapping the different 
components (services) to potentially suitable hardware. The third version 
of this functionality produces only many to one mappings, i.e. multiple 
services can be co-located on a single piece of hardware. This may be 
advantageous when services perform high-volume data transfers that 
would be expensive over a network. 

Additional 
Information 

 

Table 24 – System Requirement (6) for Pattern Generator 

8.1.2 ADW Core  

The ADW Core functionality extends across two areas: 
a) Initially gather a dataset that includes executions at least at the data service level, with 

indicative differentiations related to deployment options and input workloads and 
their measured influence on the observed QoS outputs of the service. This may be 
later on used in order to further generalize based on a set of identified attributes 

b) Reply to the Pattern Generator for the anticipated QoS levels on investigated service 
deployments  

Requirements gathered and refined from D2.1 as well as the technical process in BigDataStack 
are presented in the following tables (Table 25-Table 33) with relation to the ADW Core. These 
tables are compiled together with the rest of requirements of BigDataStack in D2.2. 
 

 Id Level of 
detail 

Type Actor Priority 

REQ-SY-DW-01 System PERF/ 
NONFUNC 

ROL-02 MAN 

Name Response Time and Workload 

Description The service provided by the data applications (e.g. recommender system) 
must have enough speed so consumers will not notice the time taken by the 
request. This implies that the Data Scientist should be able to dictate what 
are the required levels of QoS, selecting them from available metrics and 
appropriate levels for them.  

Additional 
Information 

This requirement poses initially the feature of metric selection and insertion 
at the Data Toolkit layer, for the Data Scientist to express their desires. Then 
the annotated Playbook gets passed to the following components (primarily 
ADW). Inside the Application Dimensioning Workbench, an initial candidate 
solution set is created, its estimated QoS level is enriched and the solution 
set is returned to the Data Scientist for final selection. Workload features 
(e.g. maximum/average etc. number of concurrent users) should also be 
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able to be specified in order for the system to estimate the anticipated QoS 
levels for the desired range of application level workload. 
This indicates that per category of data service or data service+analytics 
function a suitable selection of workload and QoS metrics should be 
performed and supported across the system (including also other 
components like monitoring) 

Table 25 – System Requirement (1) for ADW Core 

 Id Level of 
detail 

Type Actor Priority 

REQ-SY-DW-02 System NONFUNC 
/ PERF 

ROL-04 MAN 

Name Scalability and configurability of stress tests for load injection 

Description The system should have knowledge of a mapping between workload and 
QoS levels of the data services and algorithms (in order also to support REQ-
SY-DW-02). Therefore, it should be able to launch stress tests against the 
data services that can easily scale to support the client sizes needed. 
Furthermore, different parameters of workload should be able to be 
determined  

Additional 
Information 

Given that different data services exist in the project ecosystem, different 
baseline benchmarking tools should be identified per case. Following their 
selection, they need to be configured based on the respective workload 
parameters and scaled based on an abstracted generic approach (e.g. 
Docker containerization and Docker swarm approach) 

Table 26 – System Requirement (2) for ADW Core 

 Id Level of 
detail 

Type Actor Priority 

REQ-SY-DW-03 System FUNC ROL-04 MAN 

Name Dimensioning output 

Description The Dimensioning workbench should provide a list of candidate 
dimensioning suggestions along with the expected QoS levels towards the 
ADS Deploy component (and eventually the Application Engineer role), for 
the former to filter them based on an extra set of criteria and the latter to 
perform the final selection. 

Additional 
Information 

Upon reception of the playbook with the service graph, ADW needs to 
estimate QoS level based on the results obtained through REQ-SYS-DW-02 
and populate the respective fields. The operation should be offered through 
a REST service interface for automating the process and hiding complexities.  

Table 27 – System Requirement (3) for ADW Core 
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 Id Level of 
detail 

Type Actor Priority 

REQ-SY-DW-04 System FUNC ROL-04 MAN 

Name Monitoring requirements for dimensioning 

Description The Dimensioning workbench should have a means to obtain monitoring 
information from the deployed data services and application components 
for a given deployment to extract training data for the performance models. 
The rationale of the requirement is that for every needed metric (workload 
oriented e.g. number of current users, requests etc. or QoS oriented e.g. 
response time, throughput) in the model the respective endpoint should 
exist from which the monitoring component would extract metrics values. 
This applies to both actual runtime and benchmarking phase 

Additional 
Information 

Relevant Tools affected: Data services, application components, triple 
monitoring engine. 

Table 28 – System Requirement (4) for ADW Core 

 Id Level of 
detail 

Type Actor Priority 

REQ-SO- ADW-01 Software FUNC ROL-04 MAN 

Name Load injector dockerization 

Description To support a generic load injection process as indicated by REQ-SY-DW-02, 
“dockerization” of the respective load generators per type of service needs 
to be performed. Thus, a specific Docker container image per needed load 
generator tool needs to be provided, along with a unified process for 
feeding the per case load description file based on the Docker API and 
configuration process.   

Additional 
Information 

 

Table 29 – System Requirement (5) for ADW Core 

 
 

Id Level of 
detail 

Type Actor Priority 

REQ-SO- ADW-02 Software FUNC ROL-04 MAN 

Name Service structure specification 

Description The service graph specification coming as input from the Process Modelling 
and Data Toolkit should follow the Docker Compose specification, to be 
understandable by the Dimensioning workbench. Following, the 
Dimensioning phase should add the respective candidate resource 
deployment options as additional custom metadata in the file to be used by 
the Deployment selection.  The same applies for the benchmarking runs, 
which should be based on the same format (even without the inclusion of 
the PM and Data Toolkits). All requirements needed for deploying the 
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benchmarking environment should be described using this common agreed 
standard. 

Additional 
Information 

 

Table 30 – System Requirement (6) for ADW Core 

 
 

Id Level of 
detail 

Type Actor Priority 

REQ-SO- ADW-03 Software FUNC ROL-04 MAN 

Name Representative nature of gathered data samples 

Description In order to create representative and accurate performance models, 
dataset creation from benchmarking should take into account different 
conditions such as applied workloads, configuration aspects of the service, 
deployment options etc. In this way different bottlenecks may be examined 
and the final decision making can be adapted per case of service usage. 

Additional 
Information 

 

Table 31 – System Requirement (7) for ADW Core 

 
 

Id Level of 
detail 

Type Actor Priority 

REQ-SO- ADW-04 Software FUNC ROL-04 ENH 

Name Deployment time for stress tests 

Description The overhead added by the benchmarking setup should be negligible and 
not included in the measurement process. 

Additional 
Information 

Since the deployment phase is done in a containerized manner, the time 
used in instructions different than launching the benchmark or storing data 
should not be significant. 

Table 32 – System Requirement (8) for ADW Core 

 
 

Id Level of 
detail 

Type Actor Priority 

REQ-SO- ADW-05 Software FUNC ROL-04 ENH 

Name Benchmarking Workflow implementation 

Description During the benchmarking phase, there should be a controlled manner in 
which the various combinations described in REQ-SY-DW-02 and REQ-SO-
ADW-03 are enforced during an automated process in order to ease data 
collection. 
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Additional 
Information 

 

Table 33 – System Requirement (9) for ADW Core 

 

8.2 Specification / Design 

Following the analysis of the requirements in the previous section, we have created the set 
of system UCs for the ADW subsystem. For each case, the vertical separation refers to aspects 
such as Generic Functionalities (high level actions that the component needs to perform), 
specific sets of User Actions (i.e. selection from a relevant UI etc.), the set of Background 
Processes that need to be enacted following user preferences and any Dependencies from 
external components (or internal subcomponents of ADW) that are needed in order to 
complete the process. 
Initially the service owner needs to design a range of stress tests/benchmarks that are needed 
in order to cater for the dataset collection, including the UI based insertion of a set of needed 
information such as target service, examined workload etc. In order to aid them in this 
direction, a set of predefined workloads may be created from which the users may select the 
subset that they are mostly interested in. These predefined workloads may be mapped to 
common UCs of the services and/or tailored to the specific UCs of BigDataStack. Furthermore, 
in order to include the various hardware (HW) deployment features, it is evident that the 
ADW Core needs also to contact the Pattern Generator, feeding predefined elementary 
playbooks for the given services and acquiring the various deployment options for the stress 
test. Base load clients per data service need also to be determined and dockerized in order to 
be used as load injectors per case. QoS metrics per data service need also to be defined a 
priori, while the service owner needs to define which ones are of interest to maintain and 
correlate. Another aspect is the various configuration options for the data services, e.g. 
modes of operation, deployment etc., that might change a service’s performance profile. This 
needs to be investigated on a service level and should be included in the elementary 
playbooks included as available for the stress tests.  
Once the data service is deployed, then the stress test (launch of the distributed clients) can 
be performed. Therefore, there is an asynchronous step for benchmarking, it should wait for 
the elementary playbook’s deployment, before launching the test. 
In a nutshell, the issues that need to be handled offline and/or in agreement with respective 
parties include: 

 Enumeration of data services and/or data service+analytic algorithm options 

 Predefined workloads (per data service and/or BigDataStack UC) and way to feed 
them as input during the stress test 

 HW deployment features from Pattern Generator 
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 Configuration options that affect data service/algorithm performance and according 
elementary playbooks 

 Dockerized base load clients for each tool needed by the BigDataStack data services 
to emulate load 

 Main QoS metrics per data service and way of acquisition/storage in a given run  
Most of the aforementioned features are discussed in the context of this document (even if 
for not all of the BigDataStack services) while more concrete points such as the elementary 
playbook creation will be considered during the experimentation phase. 
We include as the main actor the role of the Data service owner, since this is the most generic 
approach. Having a wide set of data for a given data service enables the more generic and 
abstract mapping to individual deployment instances of a specific scenario. Otherwise, 
benchmarking needs to be performed for every single service graph, a process that is 
expected to be both complicated and time consuming for the Data scientist/application 
owner. 
 

 

Figure 15 - ADW Design Benchmark Run System  

 

Following the creation and acquisition of the relevant dataset, the service owner may initialize 
the process of predictive model creation in order to create the generalized predictive model 
per case. Based on a given name during the benchmarking phase, they may collect all relevant 
data and feed them to the model creation process. 
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Figure 16 - ADW Create Model System  

 
Once the previous phase has been completed, the acquired data and/or models may be 
exploited in the context of a given service instance to be deployed with given QoS needs and 
workload aspects. In this case, the Data Scientist, either in the Data Toolkit and/or in the ADS 
Ranking UI, will insert the needed data services instances and indicate anticipated workloads 
and needed QoS levels. The annotated playbook, enriched by the Pattern Generator with the 
HW deployment options, will be fed into the ADW Core, which will analyse the individual 
elements and provide the estimates (from the benchmark history and/or models) that more 
closely resemble the given deployment instance. Points of attention here include: 

 The metrics made available to the Data Scientist need to be in accordance with the 
ones supported by the benchmarking and monitoring process 

 The ADW Core needs also to annotate the initial input playbook with the anticipated 
QoS levels per service element and forward it to the ADS Deploy component for final 
selection and deployment. 
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Figure 17 - ADW Request Prediction System  

 

Following the identified system scenarios, we present the generic design architecture for the 
two main subcomponents, the Pattern Generator and the ADW Core. 

 

8.2.1 Benchmarking and Model Creation of ADW Core 

Initially, the ADW Core needs to create performance models for the elementary data services 
of BigDataStack (or combinations of services and analytics algorithms). This is needed in order 
to be able to reason on necessary resources needed per deployed instance of the service. 
However, in order not to need tests prior to each and every deployment request, an initial 
benchmarking phase is anticipated in order to gather a representative dataset with which a 
performance model can be created (thus abiding to requirements REQ-SO- ADW-03, REQ-SY-
DW-03 and REQ-SY-DW-01), but for every type of data service and for a variety of workloads 
and service configurations. 
Based on the envisioned system UCs presented, the service owner needs to design the 
benchmark phase in order to cater for representative load cases. To this end, a relevant UI is 
needed to enter the various parameters, implemented in Node-RED. The purpose of this is to 
gather the parameters and wrap them to the necessary JSON format that is the input to the 
ADW Core relevant RESTful endpoint. In order to minimize the inserted information, relevant 
fields need to be included in a parameter range type of format (e.g. min/max value and step), 
meaning that the back end wrapper needs to unwrap the various combinations and launch 
the according configurations. This launch could be performed in either a sequential or parallel 
mode, for reducing sampling time, if the available testbed resources are adequate. For 
launching the stress test for the given configuration, two features are needed: 
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 Dockerization of relevant tools that can generate base load towards the data service, 
along with capable configuration of the Docker image to initialize parameters per 
execution. 

 Implementation of the ADS Deploy client interface in order to submit the request to 
deploy the respective data service or existence of a specialized Docker Swarm cluster 
to launch the data service (implying also the existence of a dockerized version of the 
data service itself). 

Ability to check the state and progress of a running test is also needed. The Benchmarking 
Controller (BC) subcomponent automates the process of sequentially running a set of 
benchmarks. For each benchmark, the BC deploys an environment (that is, a set of data 
service and load injection containers working together), and retrieves the data to run a 
particular model. This component is agnostic to the data, and limits itself to creating the 
environment, running a configuration and storing the results.  
For each benchmark, the input to the BC is: 

 List of containers: Location of all containers to be deployed; 

 Data & configuration: Location of data to be fed to each container and list of specific 
instructions to be run inside the container; 

 Storage: Location in which the output is stored. 
 
The architecture needed for this phase appears in Figure 18. 

 

Figure 18 - Benchmark Design Architecture 

Every benchmark is run sequentially, varying the configuration to be used for the tests. Figure 
19 describes a UML description of the component architecture. As shown, the benchmarking 
component receives a set of benchmarks, in the form of multiple JSON documents following 
the standardized playbook file, each one of which is independently run. For the BC to 
individually deploy and run each benchmark, it needs to have access to a description of the 
containers (for each container, it needs the container image, a set of instructions to run inside 
and location of the data). Once deployed, the BC component retrieves the resulting data and 
stores it in a specific location. 
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Figure 19 - Class diagram of the elements in the benchmarking Components. 

Following the creation of a representative dataset, model creation needs to be triggered 
based on the same REST interface layer of ADW Core. Model creation is performed in the GNU 
Octave [7] environment through relevant service wrappers to offer it via REST. Acquisition of 
relevant data is based on the data service naming used. Once the models for each data service 
are created, they are ready to be used during the online phase for populating the various 
candidate deployment patterns (CDPs). It is necessary to stress that model structure is based 
on the various configuration options and workload aspects, so that they act as predictors, 
while the predicted output is the relevant QoS metrics for each data service. 

 

 

Figure 20 - Model Creation Architecture 
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8.2.2 Pattern Generator  

Pattern Generation is designed as an independent Apache Spark streaming service. The Data 
Toolkit component of BigDataStack passes to the Pattern Generation service a Playbook, 
containing the conceptual view of the user’s application. This Playbook is passed through a 
series of Spark transformation functions that perform the core service mapping functionality. 
The final function within the Spark topology posts the created candidate deployment patterns 
to a mailbox which can be read by the next component in the BigDataStack application 
deployment pipeline.  

The architecture of the Pattern Generation component is shown in Figure 21 below. Within 
Figure 21, Spark transformers are shown in orange while non-spark components are shown 
in blue. As we can see in Figure 21, Pattern Generation ingests Playbook objects via a RESTful 
API, which directly passes that playbook into the main Spark processing pipeline via a Spark 
receiver. Once a Playbook is ingested, it is first split into services, and each service is mapped 
to different types of available hardware, where that hardware is specified in an external 
directory. This directory may be loaded from file or directly populated from the cluster 
infrastructure management system (OpenStack in our case). Once individual or groups of 
services have been mapped to hardware, these service mappings are then re-combined into 
what we refer to as an availability sheet, which contains all valid service to hardware 
mappings. Finally, this availability sheet is used to produce a large number of unique 
candidate deployment patterns, where one candidate deployment pattern contains a service 
to hardware mapping for each service in the user’s application. These candidate deployment 
patterns are then published for consumption by the next step in the BigDataStack application 
deployment pipeline, the ADW Core.   

 

Figure 21 - ADS-Pattern Generation Architecture 

 



 
 Project No 779747 (BigDataStack) 

 D5.1 – WP5 Scientific Report and Prototype Description - Y1 

 Date: 30.11.2018 

 Dissemination Level: Public  

 

 page 48 of 66 bigdatastack.eu 

8.2.3 ADW Core Online Request prediction phase 

Following the population of the playbook with the various CDPs, it gets published to the 
relevant REST API offered by ADW Core. For each CDP, the ADW Core needs to populate it 
with the respective expected QoS levels. Thus it needs to break down the input per CDP, 
extract the service graph and start predicting the QoS level per service element. Given that 
the service elements are interconnected, one element’s input will be the previous element’s 
output. Thus, the predicted output of the first stage will act as input to the following and so 
on. For each prediction the component needs to retrieve the relevant data service baseline 
model, apply the inputs and get the result, propagating it as input to the next element of the 
graph. On completion, the various CDPs, annotated with the QoS levels, are then forwarded 
to the ADS Ranking component to investigate and decide on the finally selected trade-off. 

 

 

Figure 22 - Annotate Playbook Architecture 
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The overall API for the ADW Core, described in the previous sections, appears in Table 34.  

Method Path Input Output 

POST /postPlaybook Playbook YAML String Annotated Playbook 
YAML string with 
QoS tags. This 
primarily 
implements the 
request prediction 
operation 

POST /launchTest JSON configuration file 
for parameters (tool 
selection, workload 
features) 

Return message for 
test id 

GET /testState/id Test id State of the test 
(Complete/Ongoing) 

GET /testState/id/conf Test id Configuration of the 
test (workload 
features, deployed 
service options etc.) 

GET /ServiceTestIDs/service_name Service name (from 
available enumeration 
of available services 
(aims to return all tests 
for that service 

JSON array with test 
ids 

Table 34 - ADW Core API 

8.3 Early prototype 

8.3.1 Pattern Generator  

A Tier-0 version of the Pattern Generation component has been developed, tested and 
deployed. This component provides functionality for ingesting playbooks (REQ-T5.1-PG-R1), 
loading hardware directories from file (REQ-T5.1-PG-R2) and one-to-one service to hardware 
mapping (REQ-T5.1-PG-R4).  

Indicative generation of patterns for service elements UI, passed to dimensioning can be seen 
in Figure 23. 
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Figure 23 - Pattern Generation preferences setting UI 

Indicative interfaces linking with dimensioning responses (simulated at this stage) appear in 
Figure 24. 

 

Figure 24 - Indicative UI with populated  dimensioning estimates for pattern selection 
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8.3.2 ADW Core 

A Tier-0 version of the ADW Core is under development, testing and deployment, to provide 
functionalities for requirements REQ-SY-DW-02, REQ-SO-ADW-01, REQ-SO-ADW-02. These 
refer primarily to stress test implementation and service graph understanding inside the 
ADW. 

The REST and UI interface of the ADW Core is built in Node-RED, given the latter’s ability for 
easy information manipulation (such as the one needed for receiving and processing JSON 
and other diverse formats) as well as adaptation to various technology layers and protocols.  
Furthermore it can easily integrate between different components and create asynchronous 
flows for management of information. An example of a REST service of the ADW Core 
(/postPlaybook functionality) appears in Figure 25. 

 

 

Figure 25 - ADW Core Services Layer example implementation 

 

The deployment of the environment is managed by the ADS-Deploy component, described 
on deliverable D2.4 [4]. Figure 26 shows the technical workflow of the Benchmarking 
Component. The process is run between three components: the pattern generator, which 
generates the HW types and numbers combinations (more info on the potential combinations 
per data service is included in Section 8.4.2) and launches the service; the Benchmarking 
Component; and the ADS-Deploy component, which takes care of the deployment of the 
environment. The communication between the Benchmarking Component (BC) and the 
Dynamic Orchestrator (DO) is done using standardized JSON files for creation and destruction 
of environments. 
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Figure 26 - Workflow diagram of interaction between components 

An early pseudo-code for the BC should be as follows: 
func Benchmarking_Component (set benchmarks) 
 for (benchmark in benchmarks): 
  ed = benchmark.getEnvironmentDescription() 
  storageLocation = benchmark.getStorageLocation() 
  dcCreationFile = createDeploymentFile(ed, storageLocation) 

dcDestructionFile = createDestructionFile(ed) 
DynamicOrchestrator.requestNewEnvironment(dcFile) 
DynamicOrchestrator.requestEnvironmentDestruction(dcFile) 

 

8.4 Use case mapping 

The Pattern Generation component of the application dimensioning workbench is not 
explicitly linked to any particular UC, as it forms part of the underlying application deployment 
backbone that supports all UCs in the project. As such, an effective pattern generation 
component can be considered an implicit requirement for all user scenarios (SCE-RSM-01, 
SCE-RSM-01, SCE-CC-01, SCE-CC-02, SCE-IMB-01 and SCE-IMB-02). 

Effective pattern generation is an important step in the process of automatically identifying 
how to deploy the user’s application onto the cloud infrastructure while meeting the user’s 
needs and quality of service goals. This process aims to tackle the concerns of the Data 
Generators and Providers (STA-02) by enabling lower-cost application deployments, as well 
as the concerns of Technology Providers (STA-03) by more accurately identifying the 
hardware needed for application scalability and performance. 

Furthermore, Dimensioning applies primarily to the data services included in BigDataStack 
and as such can be viewed as generic. However, better adaptation can be targeted towards 
the specific BigDataStack UCs, specifically with relation to aspects of workload that are more 
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specific for the UC scenarios encountered in the project. This may aid us in the incorporation 
of such relevant aspects during the experimentation (e.g. benchmarking process) in order to 
include cases that are expected to be encountered during the course of the project. 

As an example, the RSM UC contains tables that have >100 columns. This is a clear indicator 
that during YCSB (Yahoo! Cloud Serving Benchmark) benchmarking of LXS, such figures in 
column numbers should be included in the investigated dataset, in order also to address REQ-
SO- ADW-03, while other examples include needed throughput levels. In the following 
paragraphs such details are displayed more concretely per UC. 

Mapping to individual features of the data services is also considered important and is listed 
in the context of this section.  

 

8.4.1 Real-time Ship Management: Workload aspects example 

Following, an initial analysis is performed on the DANAOS Real Time Ship Management 
scenario aspects. Similar analysis will be performed for the remaining scenarios in the 
following months. This analysis will help us to identify aspects that should be considered as 
inputs (predictors) to the models, as well as configure the generic benchmark tools used (e.g. 
YCSB) with specific configuration parameters for each case. Thus it may be considered that 
either we merge the acquired information in one overall configuration file or create a 
separate YCSB configuration file for each type of workload (thus one client container per row 
of workload type in Table 35) and launch them in parallel. Probably the second case is 
preferable since we will be able to distinguish (from a benchmark results acquisition point of 
view) QoS metrics per workload row/type, given that different such aspects/limits are defined 
per case.  The majority of the specific parameters can also be considered as inputs to the 
relevant UI through which a data service owner may design a benchmark run. 

In general, the RSM UC has as a major step data ingestion coming from the vessels. This at 
the moment happens via a batch file that is sent from each ship every 3 hours and contains 
vessel and engine data on a key value row structure (timestamp, vessel code, sensor name, 
sensor value), with a granularity of 1 minute measurements. Each sensor includes in this 
overall zipped file its relevant measurements on a separate file and each sensor file is handled 
separately (thus committing at the end of each sensor file). Ingestion is performed through 
upsert SQL queries per sensor file, since the combination of timestamp and vessel code is the 
primary key. Thus this functionality has an insert/update type of workload, with the majority 
of operations referring to updates (first occurrence of timestamp+vesselcode will be an insert, 
all other columns will be updates). For example, in the vessel data table with 23 columns we 
will have for each minute sample 1 as insert and 23-3=20 updates (the columns removed are 
the first inserted metric column and the timestamp and vessel code columns), resulting in an 
approximate 5-95% ratio of inserts vs updates. In the context of the project and WP4, a 
variation of this operation may be performed, including the merging of all sensor values in 
one row on the ship side, through a relevant deployed CEP instance. For this reason, we have 
also included this case of streaming data from the vessels (DANAOS-OP-2B) that may be 
investigated. 

Other secondary operations include telegram sending from ships to the main offices, but 
these take place much less frequently (once per day and at the start and end of each journey). 
The other frequent operation is a select on the averages of a given interval, which is also the 
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main current usage of the data and is used to monitor the ship’s situation on a day-to-day 
basis. The overall grouping of operations along with other necessary (from a workload 
definition perspective) information appears in Table 35. In some cases, if historical data are 
available we can proceed with an analysis to discover aspects such as distribution of requests, 
scan sizes (for the requested intervals) etc. 

Use Case 
Name 

Type of 
Operation 

Frequency Number 
of users 

Targeted 
Data 
Service 

Schema 
details (# of 
tables, table 
size, # 
constraint, 
rule size 
etc.) 

Other info (e.g. 
distribution of 
requests) 

Indicative needed 
QoS level  

DANAOS- 
OP-1 

Read 
(select a 
time frame 
and 
average) 

On request, 
typically 80 
requests 
per working 
day per 
user 

7 (Data 
Scientist@ 
DANAOS 
premises) 

LXS On tables 
with 23 and 
102 fields 
(vessel data, 
main engine) 

Configurable 
granularity on 
time intervals 
(implied scan size 
on the table), log 
file of intervals 
could aid in 
identifying scan 
sizes distribution, 
log file of requests 
for requests 
interarrival times 
distribution 

3 seconds 
response time for 
vessel data, 6 
seconds for 
engine data (per 
request), 7 max 
concurrent 
transactions per 
second 

DANAOS- 
OP-2A 

Insert/Upd
ate new 
data , 180 
inserts-> 
(180-
2)*#colum
ns updates 
ratio) 

Every 3 
hours batch 
data from 
each ship, 1 
row per 
minute of 
these 3 
hours 
(#columns*
180 key 
value raw 
data rows, 
360 output 
tuple rows) 

60 (max 
number of 
ships, 
currently 
35 with 
sensors) 

LXS On tables 
with 23 and 
102 fields 
(vessel data, 
engine data) 

Constant rate, 
batch mode 
implying bursts of 
operations, first 
column of 
time+vessel_code 
is inserted (PK), 
next metric 
columns are  
updated, 1 file per 
metric column for 
all 3 hours, 
commit at the end 
of each column 
update  

10 seconds for 
ingestion from 
the time the data 
are available 
following their 
satellite transfer 

 

DANAOS- 
OP-2B 
(Alternativ
e version 
of 2A 

Insert new 
data 
(vessel and 
engine)  

Streaming 
mode, 1 
overall row 
per ship per 
minute, 
with 
merged 
tuple data 
from CEP 
instance on 
vessel 

60 (max 
number of 
ships, 
currently 
35 with 
sensors) 

LXS On tables 
with 23 and 
102 fields 
(vessel data 
,engine data) 

Constant rate, no 
need for updates 
compared to 
DANAOS-OP-2A  

1 second per 
incoming 
message to be 
ingested   
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DANAOS- 
OP-3 

Update 
(with 
weather 
data from 
external 
weather 
service) 

Every 3 
hours per 
ship 

60 LXS On tables 
with 23 
fields (vessel 
data) 

Constant rate 
(every three 
hours) per ship 
but need log files 
of batch arrivals 
to check 
distribution 
between ships 

10 seconds from 
external data 
acquisition to 
storage 

DANAOS- 
OP-4 

Insert 
(telegram) 
(very rare 
updates) 

1 per day 
per ship 
and at start 
and end of 
voyage 

60 LXS On tables 
with  14 
fields 
(telegrams) 

Constant and 
bursty (all ships at 
12:00 UTC) for 
daily, log file for 
voyages to 
discover average 
time between 
telegrams for 
start and end of 
journey 

Response time for 
operation< 
5seconds, max 
60ships/5 
seconds=12 
transactions per 
second 

DANAOS- 
OP-5 

Insert 
(damages)  

very rare, 
about 24 
per year 
overall 

60 LXS On tables 
with  5 fields 
(damages) 

Arbitrary and of 
no specific 
concern 

Of no specific 
concern 

DANAOS- 
OP-6 

Check data Depending on inputs 
from DANAOS- OP-2 & 
3 

CEP 5 rules, 1 
with for 
depending 
on # of SLAs 
and 4 
comparisons
, 4 other 
with an 
average of 
11 fields per 
rule (10,6,16 
and 12) and 
input stream 

Depending on 
inputs from 
DANAOS- OP-2 

<1 sec of 
response time 
from data 
availability to 
alert raising 

Table 35 - Detailed Workload Specification per UC template and Real Time Ship Management instantiation 

In the following months, similar tables will be created for all the UCs following the 
concretization of the respective scenarios. 

8.4.2 Data Services Specific Configuration, Deployment and Monitoring options  

In order to have a basis for determining the performance modelling needs of the main 
BigDataStack data services, an analysis is performed in these sections with relation to each 
service. In order to drive the investigation, a table is populated for each case indicating the 
following information: 

 What are the main components of the service; 

 On a per component basis, if the specific component has been designed in order to 
support horizontal scaling, i.e. if it can run in distributed mode and thus be able to 
utilize more nodes. In this case, we do not examine if it makes sense to actually scale 
it, this is the scope of the next point. Furthermore, we do not include analysis of 
vertical scaling, since the latter is the capability of the infrastructure to provide a larger 
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resource and applies in all cases (again we do not examine in this case if it is actually 
beneficial to scale); 

 On a per component basis, whether it would be worth examining the relationship 
between horizontal scaling and actual improvement of performance and up to which 
point. If based on partners’ expertise and anticipated workloads, a specific component 
is not expected to need this testing in any realistic scenario, we can reduce the number 
of experimentation needed. The need is indicated by a Low/Medium/High state; 

 Similarly to the previous point, but for the case of vertical scaling effect. 
At the moment, the analysis has been performed for LXS (Section56) and CEP (Section 
8.4.2.2), while the respective one for the Object Store will be complete in the following 
months. 
 

8.4.2.1 LeanXcale data store 

8.4.2.1.1 LXS Configuration/Deployment options  

LeanXcale data store is a fully ACID and SQL compliant distributed database that is consisted 
of three main pillars: the Key-Value Store, the SQL Query Engine and the Transactional 
Manager. All these components can either co-exist being deployed in the same node, or be 
deployed separately, while they can scale independently. However, for improved 
performance, it is suggested that an instance of a query engine should co-exist with a data 
node in order for the former to exploit the locality of the data stored in the latter and avoid 
transmitting them over the network, resulting in significant overhead caused by the network 
transmission and the wasted CPU cycles. The transactional manager on the other hand, can 
scale linearly up to 100s of nodes, and in typical scenarios it is deployed separately. As a result, 
a LeanXcale distribution consists of the data engine nodes, where the data are stored and 
accessed via the query engine of the data store, and metadata nodes, which holds metadata 
and other information required for ensuring the transactional semantics. The metadata nodes 
contain the services needed for metadata structures: Zookeeper, Configuration Manager, the 
Transactional Manager services and the metadata for the distributed key-value store. It is 
worth to mention that the components of the metadata nodes are not CPU intensive, thus 
they can be typically replicated for tolerance but are not usually required to scale out, which 
is usually a requirement driven by the increased needs for throughput or data size. The data 
engine nodes on the other hand consist of the query engine, the local transactional manager 
and logger, and the data store nodes. The number of the data engine nodes required to be 
deployed depends on the workload in terms of throughput of the queries and transactions 
issued by the applications and the volume of data.  

Component 
Ability to Scale 
Horizontally (i.e. run in 
distributed mode) 

Expected to need testing 
in horizontal scaling (No 
(if no ability to scale 
horizontally) 
/Low/Medium/High) 

Expected to need testing 
in vertical scaling 
(Low/Medium/High) 

Metadata Manager 
(including Transactional, 
Configuration Manager 
etc.) 

No No Medium 

Query Engine+Datanode Yes High High 

Table 36 - LXS Identification of Deployment Combinations 
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LeanXcale uses Ansible [8] to be deployed. The database administrator has to define which 
elements of the data store would be part of the data node services and which one would 
constitute the metadata services. As already mentioned, usually the KiVi dataserver 
(LeanXcale’s distributed key value store), the query engine along with an instance of the 
logger of the local transactional manager would consist a data node, while the zookeeper with 
the commit sequencer, the conflict and configuration manager, along with the KiVi 
metaserver would formulate a metadata node. Having a set of machines available, the 
database administrator has to define which one of those will be dedicated for the metadata 
nodes, and which are available for the data nodes. (S)he can also define the size of memory 
of the machine and the number of the available CPUs. When all configurations are finished, 
then during the execution of the playbooks all components are automatically moved to the 
target nodes, along with all necessary configuration information. Upon initialization, 
LeanXcale advices this configuration in order to establish proper connectivity among all its 
components, and starts them with the appropriate order.  

8.4.2.1.2 LXS Monitoring metrics  

During the run-time, LeanXcale provides a wide set of monitoring information that could be 
used by a system administrator or the platform itself to ensure normal behaviour according 
to what has been specified. The monitoring information that is of interest is the information 
that is being produced by the data nodes, as these are the components that should be scaled 
in/out in order to improve performance under high workload. The produced metrics can be 
categorized in two groups: the ones provided by the query engine and the ones provided by 
the storage data node. The query engine is written in Java and provides monitoring info using 
the Dropwizard framework [9]. The advantage of the latter is that it can additionally provide 
statistical information on a monitoring metric, like mean time, mean time between a period 
of time, the histogram of the metric etc. Dropwizard can be used with a jmx plugin which 
publishes the metrics as managed beans via the jmx. Other metrics are also published and are 
available directly via the jmx, while the use of the latter allows to take advantage of Java’s 
built-in monitoring information which is available for every java virtual machine (i.e. number 
of threads, memory usage, garbage collection statistics etc.). Additionally, the usage of jmx to 
publish monitoring information makes the integration with any monitoring tool 
straightforward. Query engine’s monitoring information can be grouped by specific 
categories (version, network, logger performance, query executions, general information 
etc.). On the other hand, the information that can be obtained from the data nodes provides 
valuable insights regarding the distribution of the data, statistics of the usage per data table 
basis which can be used mostly by the query engine optimization component that is 
responsible to select the most efficient query plan among all candidates in order to improve 
the overall performance. Due to this, the statistical information provided by the data nodes 
is frequently relevant only to the query engine itself. The list of all available metrics that are 
provided by the key-value store can be grouped in four main categories: I/O, memory usage, 
memory management and data table specific information. 

8.4.2.2 CEP 

8.4.2.2.1 CEP Configuration/Deployment options  

The Complex Event Processing (CEP) engine is a distributed streaming engine made by several 
components: CEP Orchestrator, Instance Manager, JCECP client driver, Reliable Registry and 



 
 Project No 779747 (BigDataStack) 

 D5.1 – WP5 Scientific Report and Prototype Description - Y1 

 Date: 30.11.2018 

 Dissemination Level: Public  

 

 page 58 of 66 bigdatastack.eu 

Metric Exporter. The CEP can be either deployed in a single node or in a cluster. The Instance 
Manager is the worker component that does the actual processing and allows the CEP to 
scale. There may be as many Instance Managers as needed. In a single node deployment 
Instance Managers that process the same query should be started in the same NUMA node 
to minimize the communication latencies and maximize the performance.  

The CEP Orchestrator is a standalone process that is in charge of managing the CEP cluster. It 
is used to register and deploy queries and it is not involved in the actual data processing. 

The Metric Server is a standalone process used to collect metrics from the rest of components 
and expose those metrics to the BigDataStack monitoring system. 

The Reliable Registry is based on Zookeeper and it stores information related to the query 
deployments and components status. 

The JCEPC driver is the interface between the CEP and other applications and it runs in the 
client applications. 

Component 
Ability to Scale 
Horizontally (i.e. run in 
distributed mode) 

Expected to need testing 
in horizontal scaling (No 
(if no ability to scale 
horizontally) 
/Low/Medium/High) 

Expected to need 
testing in vertical 
scaling 
(Low/Medium/High) 

CEP Orchestrator No No No 

Instance Manager Yes High High 

Metric Exporter No No No 

Reliable Registry 
(Zookeeper) 

Yes Medium or Low Medium or Low  

Table 37 - CEP Identification of Deployment Combinations 

At start-up, the administrator decides the number of Instance Managers to launch and new 
Instance Managers can be added to the CEP cluster at run-time as needed. 

8.4.2.2.2 CEP Monitoring Metrics  

The CEP provides information about the throughput and latency of the queries being 
executed at run-time. All the metrics are collected by the Metric Server component which 
exposes them the rest of BigDataStack platform. Each Instance Manager sends metrics 
regarding the CPU consumption, throughput and latency of each operator deployed on it to 
the Metric Server. The user can set the rate at which these metrics are sent to the Metric 
Server. 

 

8.5 Implementation and Experimentation 

The Implementation and Experimentation plan for the different components of ADW is 
presented in the following sections. 

8.5.1 Pattern Generation 

The Pattern Generation component is planned to be initially tested as part of the evaluation 
scenarios planned at M12 (Inference without Data Access) and M15 (Inference with Data 
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Access). Under these evaluation scenarios a single user application will be deployed by the 
BigDataStack platform and instrumented under variable load conditions. 
Evaluation Setting: For each evaluation scenario, an application Playbook will have been 
created by an up-stream process that describes the application services that are to be 
deployed. This Playbook will be ingested by the Pattern Generation component, which will 
produce a series of candidate deployment patterns, which can be sent for benchmarking. The 
true suitability of each pattern will be evaluated based on actual deployment of the user 
application using the configurations defined in those patterns. 
Metrics: When evaluating the deployment patterns created by the pattern generation 
component, we are primarily interested in two main metrics.  

 Best Pattern Suitability: First metric we target is best pattern suitability for a user’s 
application, i.e.  once we have evaluated the different patterns for an application, how 
good was the best pattern we produced? We want best pattern suitability to be high 
across a range of application deployments, as if we cannot produce at least one 
suitable pattern, we will likely cause quality of service violations or at least waste 
resources during application run-time. A pattern is considered suitable if it meets all 
of the user’s quality of service requirements while not wasting significant 
computational/memory resources (that are related to cost);  

 Number of Patterns Produced: One way to get around the problem of missing suitable 
patterns would be to brute-force generate all possible patterns. However, this would 
place significant load on the benchmarking functionality discussed later in this section, 
leading to delays in application deployment as benchmarking evaluates each in turn. 
Hence, the second metric we consider is the number of patterns produced.  We want 
to minimise the number of patterns produced to reduce benchmarking load. We 
expect that there is a trade-off between best pattern suitability and the number of 
patterns produced. 

8.5.2 Benchmarking 

Evaluation Setting: For each data service, an application Playbook will have been created that 
describes the elementary data services that are to be deployed. This Playbook will be ingested 
by the Pattern Generation component, which will produce a series of candidate deployment 
patterns, which can be sent for benchmarking. Following, the various workload aspects (as 
described for example in Table 35) will be applied in the used benchmarking tools in order to 
generate relevant load. 

Metrics: When evaluating the ability to benchmark, we are primarily interested in two main 
metrics.  

 Flexible Stress Test size: The stress test creation should be straightforward and be 
easy to be configured to scale. Actual scalability limits may depend on available 
testbed size but the launch process should be agnostic to that size and adaptable 
based on user input. 

 Parameter sweep definition: The user should be able to define a number of 
parameters from which relevant combinations should be found and applied. This 
ensures coverage of the search space as well as improved model performance in the 
end. 
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8.5.3 Model Creation 

Evaluation Setting: For each data service, and following dataset acquisition from the 
benchmarking phase, a relevant performance model will be built, based on the necessary HW, 
workload and QoS features.  

Metrics: When evaluating the ability to predict the behaviour of the service, we are primarily 
interested in two main metrics.  

 Mean Absolute Percentage Error (MAPE): MAPE is the mainstream metric for 
performance prediction of the anticipated QoS levels against the actually achieved 
ones based on the gathered dataset. A MAPE of less than 20% is in general considered 
as operational. 

 Response time of the estimation process: The estimation process should be 
responsive and not delay the actual deployment stage for too long. A baseline time of 
about 5 seconds per estimation should be acceptable during the investigation of the 
various CDPs.  

 

In terms of experimentation, we anticipate in the following months to initialize the 
benchmarking phase for the various data services in BigDataStack, in order to gather the 
necessary results for the model creation in Tier-1 of the implementation. 

 

8.6 Next steps 

8.6.1 Pattern Generator 

It is currently envisaged that there will be two further releases of the Pattern Generation 
component during BigDataStack, integrating more advanced functionality: 

 Tier 1: This second version of the Pattern Generation component will replace 
hardware directory loading from file (T5.1-PG-R2) direct population from the 
OpenStack cluster infrastructure management system (T5.1-PG-R3). This version will 
also extend the current service mapping system to incorporate one to many mappings 
service-hardware mapping (T5.1-PG-R5); 

 Tier 2: the third and final version of the Pattern Generation component will include 
automatic construction of service pods, where multiple services can be co-located on 
particular pieces of hardware (T5.1-PG-R6), in addition to the more traditional 
mapping functionality provided by the earlier Tiers. 

8.6.2 ADW Core  

For ADW Core similarly, the initial version targets at meeting requirements with relation to 
initializing and executing benchmarks in order to collect the data for the next phases. To this 
end it will cater for load creation, dockerization and setup of the environment and analysis of 
the needed types of workloads, as well as performing the experiments for the various data 
services and relevant loads. Furthermore, UI driven benchmark design will be included in this 
tier. 

Two more versions will follow, integrating advanced functionality: 
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 Tier 1: The second version will aim at addressing requirements, aiming at having initial 
models for the included data services in BigDataStack and the main functionality for 
adding QoS estimates in the service graph for a given data service deployment;  

 Tier 2: the third and final version of the ADW Core will handle networked estimated 
at the entire service graph level. 

 
  



 
 Project No 779747 (BigDataStack) 

 D5.1 – WP5 Scientific Report and Prototype Description - Y1 

 Date: 30.11.2018 

 Dissemination Level: Public  

 

 page 62 of 66 bigdatastack.eu 

9 Adaptable Visualizations 

Adaptable Visualizations will present graphs and reports of data and analytics outcome in an 
adaptive and interactive way. Based on the form and the size of the data, different 
visualizations will be dynamically presented. Performance aspects such as computing, storage 
and networking infrastructure data, data sources information, and data operations outcomes 
will be visualized. 

 

9.1 Anticipated functionalities / requirements 

The anticipated functionalities / requirements are described in the following tables (Table 38 
- Table 40), that are compiled together with the rest of requirements of BigDataStack in D2.2. 

 

 Id Level of detail Type Actor Priority 

REQ-AV-01 System and 
Software 

USE ROL-04 MAN 

Name Interactive and Responsive UI 

Description The system should provide an interactive UI that should adapt to different 
devices and displays in order to provide a proper operation of the solution 
and a good user experience. 

Additional 
Information 

 

Table 38 – System Requirement (1) for Adaptable Visualizations 

 Id Level of detail Type Actor Priority 

REQ-AV-02 System and 
Software 

FUNC ROL-04 MAN 

Name Automatic graph selection 

Description Appropriate graphs and reports should automatically be selected for 
different data sets. 

Additional 
Information 

 

Table 39 – System Requirement (2) for Adaptable Visualizations 

 Id Level of detail Type Actor Priority 

REQ-AV-03 System and 
Software 

FUNC ROL-04 MAN 

Name Live data for different data sources 

Description The system should be able to display live data obtained from application 
probes, resource probes and data operations probes. 

Additional 
Information 

Adaptable selection of sources should be possible both in terms of 
application, resources or data operations, as well as in terms of the datasets 
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selected and visualized per each one of these cases. Combinations should 
also be enabled. 

Table 40 – System Requirement (3) for Adaptable Visualizations 

9.2 Specification / Design  

Figure 27 depicts the most commonly used architecture for visualizing big data. 

 

 

Figure 27 – Base architecture for visualizing big data 

The data originate either from a Data Stream or from a Database (NoSQL or Relational). A 
middleware server component consumes the data and converts them to a format suitable for 
the visualization client-side library. Live update of the data is achieved through a web socket 
interface between the server and the client. 
 
Numerous alternatives are available for the data streams, with Apache Spark and Apache Flink 
being the most prominent ones. Similar many options are available for the Middleware 
(Node.js, Spring Boot). The client library must provide graph implementations of many types, 
interactivity, responsiveness and integrations with many Javascript frameworks. State of the 
art alternatives are: 

 D3js [16]: Javascript library for manipulating documents based on Data. It is Open 
Source software that provides great flexibility and power with the cost of requiring a 
lot of effort for the implementation of every graph type. For this reason, many 
wrapper libraries around it are provided; 

 Highcharts [17]: Royalty-free, commercial, javascript library. Provides the 
implementations of hundreds of interactive graph types that can be easily integrated 
to any Javascript Application; 

 Chart js [18]: Open source javascript library that provides simple yet flexible charting 
for developers and designers. 

 

9.3 Early prototype 

The first prototype of Adaptable Visualizations will be a Single Page Application utilizing 
Reactjs framework and Highcharts library. Diagrams with dummy data will be initially 
deployed. This will allow getting feedback about the implementation and going through an 
iterative development process, before data from other components are ready. 

Database 

Middleware 
+ Web Socket 

Server 
Client Library 

Data Stream 
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9.4 Experimental Plan 

The experimental plan for validation Adaptable Visualization has as first step the 
implementation of the early prototype. As stated above the early prototype will display 
diagrams with dummy data. The next step will be to integrate with other components and 
start receiving real data. 
In terms of evaluation metrics and KPIs, the main objective will be to provide all necessary 
reporting tools for acquiring a complete picture of BigDataStack’s runtime operation. 
 

9.5 Next steps 

As the project matures, the visualization scenarios will become more concrete. The 
implementation of the Adaptable Visualizations Components will proceed as follows: 

 Define Visualization Scenarios 
o Define connections with other components 

 Connection with stream of data 

 Create mock-ups with dummy data 
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10 Conclusions 

This document presents the components of one of the main building blocks of BigDataStack, 
the Dimensioning, Modelling & Interaction Services, along with their current design 
specifications and their initial implementation and status. For every component, the 
anticipated functionalities along with its architecture are presented. Information is also 
provided, on component level, regarding the next steps and the experimental plan. Real-time 
ship management UC is used to validate the different releases of the components for the 
initial prototypes, while all project use cases will be exploited for the next iterations of the 
designs and prototypes of the dimensioning, modelling and interacting services of 
BigDataStack. 
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