

The work described in this document has been conducted within the project BigDataStack. This project has
received funding from the European Union’s Horizon 2020 (H2020) research and innovation programme under
the Grant Agreement no 779747. This document does not represent the opinion of the European Union, and the
European Union is not responsible for any use that might be made of such content.

Project Title High-performance data-centric stack for big data applications and
operations

Project Acronym BigDataStack

Grant Agreement No 779747

Instrument Research and Innovation action

Call Information and Communication Technologies Call (H2020-ICT-
2016-2017)

Start Date of Project 01/01/2018

Duration of Project 36 months

Project Website http://bigdatastack.eu/

D3.1 – WP 3 Scientific Report and
Prototype Description - Y1

Work Package WP3 – Data-driven Infrastructure Management

Lead Author (Org) Orlando Avila-García (ATOS)

Contributing Author(s)
(Org)

Ismael Cuadrado-Cordero (ATOS),

Bernat Quesada, Marti Sanchez, Matteo Sotil (ATOS WDL)

Jean Didier Totow (UPRC),

Sophia Karagiorgou (UBI),

Nikos Drosos (SILO),

Mauricio Fadel Argerich, Bin Cheng (NEC),

Pavlos Kranas, Ricardo Jiménez-Peris, Jose Maria Zaragoza, Diego
Burgos Sancho, Javier López Moratalla (LXS),

Richard McCreadie (GLA),

Marta Patiño, Ainhoa Azqueta (UPM),

Luis Tomas Bolivar (RHT)

Internal Reviewer(s)

Yosef Moatti (IBM),

Pavlos Kranas (LXS),

Dimosthenis Kyriazis (UPRC)

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 2 of 87 bigdatastack.eu

Due Date 30.11.2018

Date 5.12.2018

Version 1.0

Dissemination Level

X PU: Public (*on-line platform)

 PP: Restricted to other programme participants (including the Commission)

 RE: Restricted to a group specified by the consortium (including the Commission)

 CO: Confidential, only for members of the consortium (including the Commission)

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 3 of 87 bigdatastack.eu

Versioning and contribution history

Version Date Author Notes

0.1 24.10.2018 Orlando Avila-García
(ATOS)

Creation of the skeleton and first draft of Section
3 and Section 0

0.2 25.10.2018 Orlando Avila-García
(ATOS)

Adding general and component-specific sections
for Experimental Plan. Fixing numbering of
component-specific subsections.

0.3 09.11.2018 Orlando Avila-García
(ATOS)

Adding contributions from ATOS, UPRC, NEC,
UBI in sections 6, 7, 8 and 9. Refinement of
section 4.

0.4 19.11.2018 Orlando Avila-García
(ATOS)

Adding contributions to requirements from LXS to
sections 5, 6 and 8, and to the design to sections
6 and 8. Adding section 7 from GLA and ATOS.
Adding amendments to sections 6 and 9 from
NEC and UBI, respectively. Adding requirements
from UPM to section 8. Adding section 5 from
RHT. Refinements of section 2 and 3 by ATOS.

0.5 23.11.2018 Orlando Avila-García
(ATOS)

Reorganizing changes in CEP integration at
section 8 by UPM. Updating section 5 by RHT.
Amendments following the internal review made
by IBM: Adding Acronyms table; updating
sections 6 by NEC; updating section 7 by GLA
and ATOS; updating section 8 by ATOS and
UPRC; updating section 9 by UBI; Adding section
3.1 (assumptions) by GLA. Adding section 1
(Introduction) from ATOS.

0.6 30.11.2018 Orlando Avila-García
(ATOS)

Refinement of section 5 from RHT. Refinement of
section 4.1 (experimental setting) from ATOS
WDL. Amendments following the internal review
made by LXS and UPRC: Updating section 3.2
(assumptions) by GLA and RHT; upgrading
section 3 and 4 by ATOS; upgrading section 5 by
RHT; updating section 6 by NEC; upgrading
section 7 by ATOS and GLA; updating section 8
by ATOS and UPRC; updating section 9 by UBI.

0.7 3.12.2018 Orlando Avila-García
(ATOS)

Final amendments by ATOS.

1.0 5.12.2018 Orlando Avila-García
(ATOS)

Adding subsection 4.3 (example scenario)
elaborated by GLA, IBM and ATOS.

Disclaimer

This document contains information that is proprietary to the BigDataStack Consortium. Neither this
document nor the information contained herein shall be used, duplicated or communicated by any
means to a third party, in whole or parts, except with the prior consent of the BigDataStack Consortium.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 4 of 87 bigdatastack.eu

Table of Contents

Table of Contents ... 4

List of tables ... 6

List of figures .. 7

Acronyms ... 8

1. Executive Summary ... 9

2. Introduction .. 10
2.1. Relation to other deliverables .. 10
2.2. Document structure ... 10

3. Solution Architecture .. 12
3.1. Vision .. 12

3.2. Assumptions .. 13
3.2.1. Containerized Applications .. 14
3.2.2. Hardware Environment .. 14

3.2.3. Application Lifecycle Support .. 16

3.3. Platform Roles ... 16

3.4. Example Scenario ... 17
3.5. Design ... 21

4. Implementation and Experimentation ... 24
4.1. Experimental Setting ... 24

4.1.1. Scenario 1: Inference without Data Access (M12) 24

4.1.2. Scenario 2: Inference with Data Access (M15) 26
4.1.3. Scenario 3: Integration with WP5 and WP4 ... 27

4.2. Experimental Plan ... 28
4.2.1. Research questions ... 28
4.2.2. Research method .. 29

4.3. Implementation Roadmap ... 29

5. Cluster Management .. 32
5.1. Requirements specification ... 32

5.2. Design ... 34
5.2.1. OpenStack integration ... 35
5.2.2. Cluster performance improvements .. 36
5.2.3. Operators .. 37
5.2.4. Gateway implementation ... 38

5.3. Early Prototype .. 38
5.4. Use Case Mapping .. 40
5.5. Experimental Plan ... 40

5.6. Next Steps ... 40

6. Dynamic Orchestration ... 41
6.1. Requirements specification ... 41
6.2. Design ... 42

6.2.1. Adaptable Distributed Storage interplay .. 44

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 5 of 87 bigdatastack.eu

6.3. Early Prototype .. 44
6.4. Use Case Mapping .. 45
6.5. Experimental Plan ... 46
6.6. Next Steps ... 46

7. ADS Ranking & Deploy .. 48
7.1. Requirements specification ... 48
7.2. Design ... 52
7.3. Early Prototype .. 57

7.4. Use Case Mapping .. 60
7.5. Experimental Plan ... 60

7.5.1. Background and Related Work .. 60
7.5.2. Learning to Rank CDP Playbooks ... 61

7.5.3. Evaluation Methodology and Metrics ... 62
7.6. Next Steps ... 63

8. Triple Monitoring & QoS Evaluation ... 65

8.1. Requirements specification ... 65
8.2. Design ... 70

8.2.1. Integration details: LeanXcale ... 72

8.2.2. Integration details: CEP ... 73

8.2.3. Integration details: Spark ... 74
8.3. Early Prototype .. 76
8.4. Use Case Mapping .. 78

8.5. Experimental Plan ... 78
8.5.1. Background and Related Work .. 78

8.5.2. Evaluation Methodology and Metrics ... 79
8.6. Next Steps ... 79

9. Information-Driven Networking ... 81

9.1. Requirements specification ... 81

9.2. Design ... 82
9.3. Early Prototype .. 85

9.4. Use Case Mapping .. 85
9.5. Experimental Plan ... 86

9.6. Next Steps ... 86

10. References ... 87

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 6 of 87 bigdatastack.eu

List of tables
TABLE 1 – BIGDATASTACK PLATFORM ROLES .. 17
TABLE 2 – RESEARCH QUESTIONS. .. 29
TABLE 3 - DATA-DRIVEN INFRASTRUCTURE MANAGEMENT CAPABILITY EXPERIMENTATION PHASES. ... 30
TABLE 4 - DATA-DRIVEN INFRASTRUCTURE MANAGEMENT CAPABILITY IMPLEMENTATION PLAN. ... 31
TABLE 5 - SUPPORT OPENSHIFT INSTALLATION ON OPENSTACK VMS (SYSTEM REQUIREMENT). .. 32
TABLE 6 - AVOID DOUBLE ENCAPSULATION OF NETWORK PACKAGES (SYSTEM REQUIREMENT). ... 33
TABLE 7 - SPARK OPERATOR (SYSTEM REQUIREMENT). ... 33
TABLE 8 - ACCEPT REQUESTS TO ALLOCATE ADDITIONAL RESOURCES TO THE STORAGE LAYER (SYSTEM REQUIREMENT). 33
TABLE 9 - FORCE THE STORAGE LAYER TO RELEASE SOME OF ITS AVAILABLE RESOURCES (SYSTEM REQUIREMENT). 34
TABLE 10 – CLUSTER MANAGEMENT - MINIMAL INSTALLATION OF OPENSHIFT ON TOP OF OPENSTACK. ... 40
TABLE 11 - CORRECTION OF REQUIREMENTS AND SLOS VIOLATIONS (STAKEHOLDER REQUIREMENT). .. 41
TABLE 12 - DECISION EFFICIENCY (STAKEHOLDER REQUIREMENT). .. 41
TABLE 13 - RESOURCES LIMITS (STAKEHOLDER REQUIREMENT). .. 42
TABLE 14 - ORCHESTRATION FOR IMPROVEMENTS (STAKEHOLDER REQUIREMENT). .. 42
TABLE 15 - INGEST CANDIDATE DEPLOYMENT PLAYBOOKS AND BENCHMARKING INFORMATION (SYSTEM REQUIREMENT). 49
TABLE 16 - DEPLOYMENT SUITABILITY FEATURE EXTRACTION (SYSTEM REQUIREMENT). ... 49
TABLE 17 - CDP PLAYBOOK SCORING (HEURISTIC) (SYSTEM REQUIREMENT). .. 49
TABLE 18 - CDP PLAYBOOK SCORING (SUPERVISED) (SYSTEM REQUIREMENT). ... 50
TABLE 19 - CDP PLAYBOOK SELECTION (SYSTEM REQUIREMENT). ... 50
TABLE 20 - SUPERVISED MODEL TRAINING (SYSTEM REQUIREMENT). ... 50
TABLE 21 - CDP PLAYBOOK RE-SCORING (SYSTEM REQUIREMENT). ... 51
TABLE 22 – PERFORMANCE MEASURABILITY (STAKEHOLDER REQUIREMENT). .. 51
TABLE 23 - STANDARDS-BASED PLAYBOOK (STAKEHOLDER REQUIREMENT). ... 51
TABLE 24 - STANDARD DEPLOYMENT INFORMATION (SYSTEM REQUIREMENT). .. 51
TABLE 25 – APPLICATION SCORING SYSTEM (SYSTEM REQUIREMENT). ... 52
TABLE 26 - COMPATIBILITY WITH KUBERNETES (SYSTEM REQUIREMENT). ... 52
TABLE 27 - SYNCHRONOUS COMMUNICATION (SYSTEM REQUIREMENT). ... 52
TABLE 28 - REGULAR RECORDING OF DEPLOYMENT QOS INFORMATION (STAKEHOLDER REQUIREMENT). .. 65
TABLE 29 - QOS VIOLATION NOTIFICATION (STAKEHOLDER REQUIREMENT). ... 66
TABLE 30 - QOS VIOLATION MONITORING (STAKEHOLDER REQUIREMENT). .. 66
TABLE 31 - METRICS PUSHER (SYSTEM REQUIREMENT). ... 66
TABLE 32 - MONITORING METRICS API REST (SYSTEM REQUIREMENT). .. 66
TABLE 33 - MONITORING METRICS GETTER (SOFTWARE REQUIREMENT). .. 67
TABLE 34 - SPARK COMPATIBILITY (SOFTWARE REQUIREMENT).. 67
TABLE 35 - LEANXCALE COMPATIBILITY (SOFTWARE REQUIREMENT). .. 67
TABLE 36 - OKD COMPATIBILITY (SOFTWARE REQUIREMENT). .. 68
TABLE 37 - CEP COMPATIBILITY (SOFTWARE REQUIREMENT). .. 68
TABLE 38 - MINIO COMPATIBILITY (SOFTWARE REQUIREMENT). .. 68
TABLE 39 - OPENSTACK NETWORKING SERVICES COMPATIBILITY (SOFTWARE REQUIREMENT). ... 69
TABLE 40 - MONITORING DATABASE (SOFTWARE REQUIREMENT). .. 69
TABLE 41 - MONITORING PUSHGATEWAY (SOFTWARE REQUIREMENT). .. 69
TABLE 42 - METRICS VISUALIZATION (SOFTWARE REQUIREMENT). .. 69
TABLE 43 - METRICS VISUALIZATION (SOFTWARE REQUIREMENT). .. 70
TABLE 44 - NETWORK POLICIES BASED ON TYPE OF DATA (SOFTWARE REQUIREMENT). ... 81
TABLE 45 - NETWORK POLICIES BASED ON APPLICATION (SOFTWARE REQUIREMENT). ... 82
TABLE 46 – AN INDICATIVE NETWORK POLICY DEFINITION FOR INGRESS TRAFFIC. ... 83
TABLE 47 – AN INDICATIVE NETWORK POLICY DEFINITION FOR CONTROLLING HTTP GET REQUESTS. .. 85

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 7 of 87 bigdatastack.eu

List of figures
FIGURE 1 – BIGDATASTACK CORE PLATFORM CAPABILITIES (EXTRACTED FROM D2.1) ... 12
FIGURE 2 – THE BIGDATASTACK SEVEN-STEP PROCESS (EXTRACTED FROM D2.4) .. 13
FIGURE 3 – CLUSTER MANAGEMENT SCENARIOS .. 15
FIGURE 4 – DATA-DRIVEN INFRASTRUCTURE MANAGEMENT CAPABILITY - CONCEPTUAL VIEW. .. 21
FIGURE 5 – DATA-DRIVEN INFRASTRUCTURE MANAGEMENT CAPABILITY - COMPONENTS VIEW. ... 22
FIGURE 6 – DATA-DRIVEN INFRASTRUCTURE MANAGEMENT CAPABILITY - ACTIVITY VIEW. .. 23
FIGURE 7 – EXPERIMENTAL SCENARIO 1: INFERENCE WITHOUT DATA ACCESS (M12) - DATA FLOW VIEW. ... 25
FIGURE 8 – EXPERIMENTAL SCENARIO 2: INFERENCE WITH DATA ACCESS (M15) - DATA FLOW VIEW. .. 26
FIGURE 9 – CLUSTER MANAGEMENT - COMPONENTS VIEW. .. 35
FIGURE 10 – RED HAT KURYR’S ARCHITECTURE TO AVOID THE “DOUBLE ENCAPSULATION PROBLEM.”7 ... 36
FIGURE 11 – KUBERNETES OPERATORS – CONCEPTUAL VIEW. .. 37
FIGURE 12 – BEST PRACTICES FOR DEPLOYING OPENSHIFT ON TOP OF OPENSTACK... 38
FIGURE 13 – DYNAMIC ORCHESTRATOR – CONCEPTUAL DIAGRAM. .. 42
FIGURE 14 – ADS RANKING INTERACTION DIAGRAM ... 43
FIGURE 15 – RANKING AND DEPLOYMENT MODULE ARCHITECTURE. ... 53
FIGURE 16 – ADS RANKING INTERACTION DIAGRAM ... 54
FIGURE 17 – INTERACTION DIAGRAM OF THE ADS DEPLOYMENT AND RANKING DESIGN .. 56
FIGURE 18 – ADS TEST SYSTEM, PLAYBOOK VIEW. .. 58
FIGURE 19 – ADS TEST SYSTEM, RANKING VIEW. .. 59
FIGURE 20 – TRIPLE MONITORING ENGINE & QOS EVALUATION – CONCEPTUAL VIEW. ... 70
FIGURE 21 – INTERACTION BETWEEN MONITORING AND QOS EVALUATOR COMPONENTS. ... 71
FIGURE 22 – INTERACTION BETWEEN TRIPLE MONITORING ENGINE, QOS EVALUATOR AND ADS DEPLOY COMPONENTS. 72
FIGURE 23 – PROMETHEUS-CEP INTEGRATION – CONCEPTUAL VIEW. .. 74
FIGURE 24 – PROMETHEUS-SPARK INTEGRATION – CONCEPTUAL VIEW. ... 75
FIGURE 25 – CONFIGURATION OF THE KUBERNETES MONITORING IN PROMETHEUS. ... 76
FIGURE 26 – KUBERNETES METRICS VISUALIZATION IN GRAFANA. ... 77
FIGURE 27 – CEP COMPONENTS PERFORMANCE VISUALIZATION WITH GRAFANA. ... 77
FIGURE 28 – INFORMATION-DRIVEN NETWORKING UML. .. 85
FIGURE 29 – MAPPING OF INFORMATION-DRIVEN NETWORKING TOOL WITH BDS USE CASES. .. 86

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 8 of 87 bigdatastack.eu

Acronyms

ADS Application and Data Services

CDP Candidate Deployment Pattern

ADW Application Dimensioning Workbench

QoS Quality of Service

SLA Service-Level Agreement

SLO Service-Level Objective

KPI Key-Performance Indicators

VM Virtual Machine

AWS Amazon Web Services

GCP Google Cloud Platform

CEP Complex Event Processing

CI Continuous Integration

CD Continuous Delivery

SDN Software-Defined Network

EKS AWS Elastic Kubernetes Service

AWS Amazon Web Services

RL Reinforcement Learning

OKD Openshift Origin Kubernetes Distribution

LbaaS Load Balancer as a Service

CRD Kubernetes Custom Resource Definition

OVN Open Virtual Networking

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 9 of 87 bigdatastack.eu

1. Executive Summary

This is the Scientific Report and Prototype Description (Y1) for the work done in WP3 on the
Data-Driven Infrastructure Management capability of BigDataStack. The document shows the
plan to deliver the solution through a series of implementation and experimentation
increments. It describes the high-level architecture of the solution, as well as the detailed
specification of requirements, design, first prototype and experimentation plan per solution
component.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 10 of 87 bigdatastack.eu

2. Introduction

This deliverable presents Scientific Report and Prototype Description (Y1) for the work of
WP3, which is related to the so-called Data-Driven Infrastructure Management capability of
the BigDataStack platform. The document shows how the implementation of the solution is
planned to be delivered following an incremental and iterative methodology, having cycles of
implementation and experimentation. On one hand, the document describes the high-level
assumptions and architecture of the capability, as well as detailed requirements, design and
prototypes per component. On the other hand, it describes the experimental use case
scenarios and plans, as well as the experimental plan per component and its mapping with
the use case scenarios.

2.1. Relation to other deliverables

This document is related to the following past and immediately upcoming deliverables in the
project.

• D2.4 – Conceptual model and Reference architecture (M6). The description of the
high-level architecture of BigDataStack as well as the interplay and integration
between the main components. The architecture of the Data-Driven Infrastructure
Management as well as the design of the components have been devised to fit into
such a global architecture.

• D2.2 – Requirements & State of the Art Analysis II (M11). The specification of
BigDataStack requirements is centralized in this deliverable. This specification is a
refinement of the first version delivered in D2.1 (M6). The architecture of the Data-
Driven Infrastructure Management (DDIM) as well as the design of the components
have been devised to satisfy those requirements. Please note that for the reader’s
convenience, the requirements related to each one of the DDIM components have
also been included (literally brought from D2.2) in the present deliverable,
specifically, at subsections 5.1, 6.1, 7.1, 8.1 and 9.1.

• D4.1 – WP4 Scientific Report and Prototype Description - Y1 (M11). The D3.1 makes
references to some of the requirements and components which are designed,
implemented and experimented with at WP4, while also the D4.1 references and
raises requirements that are being described in the current document. In fact, the
Data-Driven Infrastructure Management is meant to provide infrastructure services
(Infrastructure-as-a-Service) to those components.

• D5.1 – WP5 Scientific Report and Prototype Description - Y1 (M11). The D3.1 makes
references to some of the requirements and components which are designed,
implemented and experimented with at WP5; this is because the tools developed at
WP5 will interact with the services and resources provided by the infrastructure to
implement certain functionality supporting the different BigDataStack stakeholders
(see Section 3.3).

2.2. Document structure

The document is structured as follows: Section 3 describes de solution architecture of the
data-driven infrastructure management capability of BigDataStack, including the

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 11 of 87 bigdatastack.eu

assumptions made (Section 3.2), the architecture vision (Section 3.1), the related platform
roles (Section 3.3) and the high-level design (see Section 3.4).

Section 0 presents the implementation and experimentation plan. Starting with the
experimental setting (i.e. scenarios, Section 4.1) and plan (i.e. research questions and
methodology, Section 4.2), it finalizes with the implementation and experimentation
roadmaps (Section 4.3).

The final five sections are dedicated to the requirements specification, design description,
use case mapping, prototype description and next steps elaboration for each of the five
high-level components of the architecture: Cluster Management (Section 5), Dynamic
Orchestration (Section 6), ADS Ranking & Deploy (Section 7), Triple Monitoring & QoS
Evaluation (Section 8) and Information-Driven Networking (9).

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 12 of 87 bigdatastack.eu

3. Solution Architecture

This section describes the technical solution for the Data-driven Infrastructure Management.
It firstly describes the vision of this BigDataStack platform capability (context, goal, main
functions or services). Secondly, it enumerates the assumptions the work package makes
about the environment that BigDataStack will be deployed within. Thirdly, it shows the
platform roles engaged in the use of the capability as well as an example scenario. Finally, it
describes the global design of the solution.

3.1. Vision

The envisioned BigDataStack platform represents a full stack which aims to facilitate the
needs of data operations and applications (all of which tend to be data-intensive) in an
optimal way. In such a stack, a layer of self-managed and self-optimizing data-driven
infrastructure will be the basis for upper-level layers providing higher capabilities (see Figure
1) to BigDataStack platform roles (see Section 3.3).

Figure 1 – BigDataStack core platform capabilities (extracted from D2.1)

These six BigDataStack core platform capabilities are envisioned to achieve the business goals
or expectations from the different stakeholders. In the case of the Data-driven Infrastructure
Management capability, the goal is to provide means for efficient and optimized
infrastructure operations, incorporating all aspects of data-driven management for the
compute, storage and network resources.

This capability is mainly engaged in the Operation Phase of BigDataStack (see D2.4). It is
realised through different components of the BigDataStack infrastructure management
system and aims at the management of the complete virtual and physical infrastructure
resources, in an optimised way for data-intensive applications.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 13 of 87 bigdatastack.eu

Figure 2 – The BigDataStack seven-step process (extracted from D2.4)

Figure 2 shows the seven-step process comprising the BigDataStack Operation Phase, which
needs to be fully supported by the Data-driven Infrastructure Management capability
(extracted from D2.4):

1. Based on benchmarking and previous deployments, compute (e.g. VMs, instances,

containers) and storage (e.g. block, volumes) resources are allocated.

2. According to the allocated resources, distributed stores (e.g. databases, object stores)

are deployed and the data uploaded.

3. Data-driven networking services are also deployed to facilitate the diverse networking

needs between different computing and storage resources.

4. Application components and data services are deployed and orchestrated based on

application and data-aware deployment patterns. A ranking and deployment function

will perform optimal deployments according to those deployment patterns and the

reserved computing, storage and networking resources.

5. Data analytics tasks will be distributed across the different nodes of data processing

clusters, while orchestration of application components and data services is also

performed.

6. Monitoring data is collected and evaluated for the resources (compute, storage and

network), application components and data services and operations.

7. Runtime adaptations take place for all elements of the environment including

resource re-allocation, storage and analytics re-distribution, re-compilation of

network functions and re-deployment or applications and data services.

3.2. Assumptions

Before discussing the requirements for Data-driven Infrastructure Management, it is
important to specify any foundational assumptions that the work package makes about the
environment that BigDataStack will be deployed within. Indeed, we have so far simply
referred to compute, storage and network resources that form the ‘Infrastructure’ in Data-

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 14 of 87 bigdatastack.eu

driven Infrastructure Management. However, we need to also consider what we are
deploying and when and where we are deploying it.

3.2.1. Containerized Applications

The overall aim of WP3 is to enable the efficient and effective deployment and management
of arbitrary user applications on high-performance compute clusters. However, deploying a
user application is a complex process, as an application may have hardware dependencies
(e.g. it needs a GPU accelerated machine) or software dependencies (e.g. a particular
operating system, libraries, or processing engine like Apache Spark). Indeed, it would be an
impossible task to build a system that could accept any application without restrictions. As
such, simplifying assumptions need to be made to create a general deployment solution.

Over the last few years, one solution to this problem has become popular, namely application
containers. The core idea underpinning this technique is that the user will create containers
for their application’s services, which contains the compiled code and any dependencies, all
in a single bundle. A container is therefore effectively self-contained, and hence can be more
easily deployed. Container orchestration platforms such as Kubernetes or OpenShift then
provide a standard platform for deploying containers on bare metal hardware1. In this case,
the orchestration platform is responsible for assigning resources (e.g. CPU cores and RAM) to
individual containers, where the resources of a single physical machine are shared across
multiple containers. Complex user applications are often comprised of multiple containers
that depend on one another, or rely on shared resources such as a central database
repository. Orchestration platforms often provide the means to define groups of containers
(e.g. Kubernetes Pods) that are deployed together to support these more complex types of
application.

A foundational assumption of BigDataStack is that user applications/services will be either
provided in containers, or the user will be making use of pre-built services from the
BigDataStack library that are already containerized. The role of Data-driven Infrastructure
Management is then to deploy and manage these containers such that user-defined Service-
Level Objectives (SLOs) are met.

3.2.2. Hardware Environment

In general, we can consider three scenarios where a user requisitions big data infrastructure,
each one comes with its own advantages and limitations. The first and simplest case is where
the user already owns and administers their own cluster that they want to manage solely with
BigDataStack. We refer to this as the ‘dedicated cluster’ scenario. Under this scenario,
BigDataStack would be deployed on and would manage the entire cluster.

The second case is where the user wants to requisition a portion of a shared cluster, where
the unit of requisition is a single machine (physical or virtual). This might represent a case
where users do not own their own big data infrastructure and are looking to other companies
to provide that for them. Or they are part of a large company with a single cluster that is
shared amongst multiple teams. We refer to this as the ‘opaque cluster’ scenario. In this
scenario, BigDataStack would be first deployed on top of a small portion of the external

1 Sometimes there may be an additional virtualization layer, where the container
orchestration platform itself is deployed on a virtual machine. This may occur when hardware
is shared with other orchestration platforms or other non-containerized applications.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 15 of 87 bigdatastack.eu

opaque cluster. New machines may then be requisitioned from the opaque cluster on-
demand, possibly for an additional fee. An example of this scenario is a case were a user wants
to make use of BigDataStack’s proposed Data-driven Infrastructure Management capabilities
over a public cloud like Amazon Web Services or Microsoft Azure.

The third case is where the user wishes to use an external provider’s orchestration platform
for deploying their containers (e.g. Amazon EKS). This might occur in scenarios where a user
wants to leverage optimisations or additional services provided by an external provider’s
orchestration platform (e.g. native cross-availability zone support in Amazon Elastic
Kubernetes Service or EKS) but would still like to make use of BigDataStack’s data services
and/or dimensioning and modelling capabilities. We refer to this as the ‘opaque orchestrated
cluster’ scenario.

Figure 3 – Cluster Management Scenarios

We can see these three scenarios in Figure 3. The key difference between these scenarios is
who controls the way that the virtualized containers are allocated to physical hardware. In
the dedicated cluster scenario, that process would be controlled directly by BigDataStack (as
part of step 1 of the operations phase). In the opaque cluster scenario, BigDataStack still
controls the allocation of virtualized containers to physical hardware, but that hardware may
be being shared with other processes (e.g. we ask for 4 CPU cores and the external cluster
manager allocates us half an 8 CPU core physical machine). Finally, in an opaque orchestrated
cluster, allocation to physical hardware is controlled by an external orchestration manager
(BigDataStack has no control of the physical hardware).

It is important to note this distinction, as which scenarios BigDataStack targets will impact on
component design. If BigDataStack targets the opaque cluster and/or the opaque
orchestrated cluster scenarios, it will be usable by a wider audience, as users do not need to

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 16 of 87 bigdatastack.eu

own or rent a dedicated cloud. On the other hand, reliance on external management software
may result in containers and/or services from different user applications sharing a physical
hardware, making it more difficult to estimate with confidence if Service-Level Objectives
(SLOs) will be met in advance (as hardware sharing would be unpredictable and invisible to
BigDataStack). Meanwhile, targeting only a dedicated cloud means that BigDataStack would
have the power to avoid hardware sharing, or at least account for it, when checking SLOs (as
all deployed services would be visible to BigDataStack). However, this markedly reduces the
potential user-base for BigDataStack, and even if hardware sharing can be identified as a root
cause for an SLO failure (which may not be possible), it is unclear what actions BigDataStack
could take other than move the failing service to another machine.

For these reasons, subsequent design for Data-driven Infrastructure Management assumes
that BigDataStack will support both dedicated and opaque cluster scenarios. Note that as a
result, some BigDataStack functionalities may be unavailable in opaque cluster deployments
(in cases where those functionalities require dedicated control of underlying hardware to be
effective).

3.2.3. Application Lifecycle Support

It is important to note we envision a The Data-Driven Infrastructure Management capability
(DDIM) which plays a role in two clearly differentiated stages of the software application
lifecycle: (first) deployment and operations.

- Deployment: In the first deployment, DDIM carries out an optimal deployment
configuration for the application to satisfy its Quality of Service (QoS) constraints. The
decision-making process is based on the previous experience with the deployment of
that application (from both benchmarking and production executions) as well as
similar applications.

- Operations: At runtime, the DDIM continuously monitors the application as well as the
underlying infrastructure to evaluate its QoS. In case it is not satisfied, the DDIM
triggers a dynamic adaptation process to reconfigure the application deployment. This
decision-making process is based not only on previous experience in application
deployments but more importantly the experience gathered during the current
execution.

3.3. Platform Roles

The following table lists the BigDataStack roles that will be interacting with the Data-driven
Infrastructure Management (see the complete list of roles in Deliverable D2.2).

Id Name Description

ROL-01 Data Owner They would need to move both in-motion (streaming) and at-
rest data into BigDataStack data stores layer, which support
both SQL and NoSQL data stores.

ROL-02 Data Scientist They would need to deploy and operate their analytics tasks by
utilizing a declarative paradigm, which includes preferences
regarding the data services (such as data sores or processing)
to be used, and the Quality of Service (QoS) constraints to be
applied on the analytics tasks.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 17 of 87 bigdatastack.eu

ROL-04 Application
Engineers

They would need to experiment with different deployments
for their data applications, which include analytics tasks along
with other application services. They would need to
benchmark the data application to come up with the optimal
deployment configuration to satisfy QoS constraints.

ROL-05 Data Engineers They would need to deploy and operate data services (such as
data storage, data processing or data visualization) on the
BigDataStack platform, in a way that let them satisfy the QoS
constraints requested by the consuming analytics tasks.

Table 1 – BigDataStack Platform roles

3.4. Example Scenario

In this section, we provide a detailed example scenario of a data-driven application
deployment and operation to illustrate how Data-driven Infrastructure Management is
envisaged to function and how the application engineers and data scientists benefits from its
functionalities.

An example data-driven application

For this example, let us assume that we have a stock pricing application for a large European
grocery retailer. The application’s role is to set the prices for all goods in the consortium’s
online stores, including adding one-day flash sales to promote regular engagement from
customers. There is an important constraint for data scientist devising the big data analytics
algorithms and the application engineers deploying and executing those as compute tasks: it
needs to run each night after 9pm and needs to be finished by 4am, such that the online
storefronts have time to update their pricing before morning traffic.

The application itself is comprised of three main services: the price modelling service, the
price application service and the store-front update service. The price modelling service needs
to run first as a large batch operation, ingesting all sales from the previous twelve months and
updating the internal model about product stock and popularity. This means the model
update process will required access to historical big data. Once that service is finished, the
price application service runs over all current stock, updating the item prices and adding sales
where appropriate. As items are processed, these are sent directly to the store-front update
service, which remotely updates the various consortium’s store-front databases. In this
example, these two last services are parallelizable.

Operational environment (scenario assumptions)

To make the example more concrete we consider the following assumptions:

a) The BigDataStack infrastructure is deployed on an opaque cloud provided by a public

vendor, where compute resources can be requested on demand.

b) The cloud environment is relatively stable in term of performance and, for the sake of

simplicity, we have a unique size of allocable server.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 18 of 87 bigdatastack.eu

c) The time needed to complete the compute task is a distribution that has been learnt

(e.g., a normal distribution) where the average is some (linear) function of the input

data size (which may change every day) and a (decreasing) function of the number of

servers allocated.

d) The distributed storage possesses an adaptation mechanism which is independent

from those of the Data-Driven Infrastructure Management, which means it can be

scaled in/out independently, considering decisions based on its internal metrics and

handle on its own the reconfiguration of the internal data regions (see Section 5.1,

REQ-CM-04).

e) The benchmarking phase (see D5.1), give hints (estimates) on the expected

computation time depending on different variables, including the opaque cloud

configuration, the application deployment configuration and even the day of the

week/month, but with some non-negligible uncertainty.

f) The historical big data is stored in a secure datastore managed by BigDataStack,

including the specification of what data needs to be processed by what service (e.g.,

the price modelling service need the last twelve months’ sales information).

g) The Data-driven Infrastructure Management (DDIM) decision-making includes a policy

to minimize the overall cost of the underlying public (opaque) cloud; this would let the

system to allocate no more resources than necessary to deploy and operate

applications. Therefore, application engineers do not need to explicitly ask for a

minimization of cost (or specify cost as a Service-Level Objective (SLO) as this objective

will be embedded in the DDIM decision-making process.

h) The Service-Level Objectives (SLOs) violations do not penalize economically the Data-

driven Infrastructure Management function in favour of those setting SLOs, that is, the

application engineers and data scientists. This means there is no trade-off to make

between public cloud cost versus penalties. Therefore, we avoid the scenario where

the DDIM decision-making compromise between the cost (in terms of public cloud) of

a re-deployment and the cost of keeping on violating an SLO. This is indeed a

simplification of real-world scenarios, but it is necessary to keep this example scenario

concise enough as to make it an effective example.

Before deployment (and prior to Data-Driven Infrastructure Management)

The application engineer uploads the application to the BigDataStack platform and specifies
the main workflow of their application via the Process Modelling Toolkit. This implies that
there are two phases: Phase 1) the price modelling service runs, and Phase 2) the price
application service and store-front update service run concurrently.

As part of the service, it is agreed a Service Level Objective (SLO) of end-to-end completion
time < 7 hours−to be accomplished between 9pm and 4am, as they plan to schedule the
process to start at 9pm every day. Finally, preferences they may have regarding the
configuration of the application deployment are also specified, for example, the container

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 19 of 87 bigdatastack.eu

images location and basic resources allotted to them (e.g., virtual CPUs and memory). All this
information is compiled in a so-called Playbook.

The Playbook is passed to the Application Dimensioning Workbench, where it is converted
into multiple CDP (Candidate Deployment Pattern) Playbooks, each one describing a potential
deployment configuration (what compute and memory resources to request). Each of these
configurations will undergo a brief benchmarking step, where the resource usage of the
application is estimated (this involves using a small sample of data to test the system). For the
purposes of this example, we assume that a per-service virtual CPU usage, memory usage,
data input/output bandwidth and time-to-complete is estimated. It is the resultant set of CDP
Playbooks with benchmarking information that is passed to Data-driven Infrastructure
Management to optimize its decision-making models.

Application deployment (initial)

The first function of the Data-driven Infrastructure Management is resource estimation. As
discussed later in Section 7, the ADS Ranking component takes the set of CDP Playbooks
resulting from the benchmarking activities and selects the most suitable one by comparing
the benchmarking estimates with the user SLOs and application deployment preferences. In
our example, for each CDP Playbook, this process involves analysing each of the two
application phases to determine what resources they need to run efficiently. This means using
the benchmarking data in conjunction with historical information from past similar
deployments to model factors such as expected virtual CPU and memory usage per-service
(under average and peak conditions), affinity for scale-out vs. scale up, and monetary cost
(machine cost of the cloud provider in this example). This way, each CDP Playbook is assigned
a score, indicating how well it is predicted to perform. ADS Ranking then filters out any CDP
Playbooks that are predicted to fail the user’s SLOs (i.e. the aggregate time for both phases
exceeds the completion time limit set by the user) and selects the highest scoring CDP
Playbook of those remaining.

The next step is for the Deployment service (see Section 7) to take the selected CDP Playbook
and requests the resources specified within. This petition is fulfilled (the deployment
operations enacted) by the underlying Cluster Management service (see Section 5), which in
this case will map the requested resources into a series of machine allocation demands that
are sent to the public cloud provider for the application services. After this, data-driven
networking is configured, enabling the secure information transfer between the machine
holding the object store and the machines needing to perform the compute, as well as
hooking in monitoring functionality to facilitate data transfer optimisation.

Application operations (re-deployment)

Once the application has been successfully deployed, the Dynamic Orchestrator (see Section
6) enters scene as responsible for managing run-time adaptation of the application
deployment and networking configurations. The first action that the Dynamic Orchestrator
performs is to request the Triple Monitoring and QoS Evaluation (see Section 8) of the new
deployment. As a result, metrics regarding the completion time of the application services

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 20 of 87 bigdatastack.eu

start to be collected as well as evaluated against the SLO originally set by the application
engineer: end-to-end completion time < 7 hours.

After a certain period, the Dynamic Orchestrator observes that the estimated completion
time (measured by the rate at which ‘data row processed’ events are received) for Phase 1
has changed from 4 hours to 6 hours. As a result, end-to-end completion time is now
estimated at 8 hours (an estimated completion time of 5am), constituting an SLO failure state.

Thus, the Dynamic Orchestrator will try to fix this automatically via run-time adaptation within
the platform. The exact operation that the Dynamic Orchestrator will employ depends on the
log data from the running application and to what extent the application supports run-time
changes. For this example, we will assume that the log data indicates that the compute nodes
are maximising CPU usage, and hence we might fix the issue by increasing the amount of
compute resources available. Furthermore, we assume that the application is run-time
scalable, i.e. it supports changing at run-time the degree of parallelism (e.g., an Apache Flink
or Apache Storm application). As such the Dynamic Orchestrator will send a request to the
ADS Ranking component requesting service re-deployment, where both the target
completion time and CPU capacity are updated to reflect the state of the running service.

The ADS Ranking will then re-score all of the CDP Playbooks that it has available for the user’s
application in light of these new requirements. The difference with the previous deployment
is that by including a target CPU capacity, CDP Playbooks with increased CPU resources will
be favoured. Moreover, by re-estimating the completion time and matching against the new
target completion time for Phase 1, un-suitable configurations can be discarded. Note that
this may also result in changes in the way that the Phase 2 services are deployed (to increase
speed of Phase 2 processing in order to save total time). At the end of this re-scoring, a new
CDP Playbook will be selected.

This new CDP Playbook will then be sent to ADS Deployment, which will compare the current
deployment against the new deployment and operationalize the needed changes. These
changes might involve requesting another machine to increase parallelism of the service,
which would be allocated by the Cluster Management component and would be subject to
the same data and network configuration as during the initial deployment (e.g. to assure that
the needed communication ports are open). This might involve physically starting a new copy
of the target service on the additional machine (if the application is self-configuring).
Otherwise, if the application integrates a process management platform like Apache Flink,
then this would involve starting a management daemon on the new machine, effectively
adding the machine to the ‘Flink Cluster’ for the application, which will seamlessly scaling
computation up to use the newly available resources.

Concluding remarks

To conclude this example, let’s assume that this deployment correction increases throughput
of Phase 1 sufficiently to catch up to the target completion time set by the user; if it did not,
then other run-time adaptations may be attempted and/or the user informed.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 21 of 87 bigdatastack.eu

3.5. Design

The conceptual view of the Data-driven Infrastructure Management capability shows the
main high-level functions as well as the data flows among them (see Figure 4).

Figure 4 – Data-driven Infrastructure Management capability - conceptual view.

These functions are organized in (realized by) five solution building blocks (components),
which corresponds to the five tasks within WP3:

1. Cluster Management (WP3-T3.1): Infrastructure services providing cluster computing

and data storage resources and is responsible for deploying the BigDataStack platform

and associated container orchestration platform on physical hardware. For opaque

clusters, this also involves dynamic scaling of the orchestrated hardware on-demand.

The component also provides an API to support (re-)configuration actions or resources

requests by the ADS Deployment. This provides functionality for BigDataStack

operations – Steps 1 and 2 (see Section 3.1).

2. Dynamic Orchestration (WP3-T3.2): Runtime adaptation service in charge of resource
re-allocation, storage and analytics re-distribution, re-compilation of network
functions and re-deployment or applications and data services. This provides
functionality for BigDataStack operations – Steps 5 and 7 (see Section 3.1).

3. ADS Ranking & ADS Deployment (WP3-T3.3). Self-optimized deployment service for

application components and data services, which are orchestrated following resource,

application and data-aware deployment patterns. This provides functionality for

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 22 of 87 bigdatastack.eu

BigDataStack operations – Steps 4, 5 and 7 (see Section 3.1).

4. Triple Monitoring and QoS Evaluation (WP3-T3.5). It consists of the resource clusters,
data and application-level metrics collectors, the monitoring manager (which also
gathers database related metrics) and the QoS evaluator, which evaluates Service-
Level Objectives (SLOs) over those metrics. This provides functionality for
BigDataStack operations – Step 6 (see Section 3.1).

5. Networking (WP3-T3.4). Data-driven networking services satisfy the diverse

networking needs among computing and storage resources as well as application

components and data services. It plays a critical role in the optimal (self-) management

of the infrastructure to satisfy QoS. It is important to note that this component not

only collects networking metrics, but it also applies the (re-) configuration actions over

networking resources requested by the ADS Deployment. It provides functionality for

the BigDataStack operations – Step 3 and 7 (see Section 3.1).

Figure 5 describes the capability from a lower-level logical perspective, including the main
components, their interfaces and dependencies. Dependencies from/to external components
are also shown; specifically, the need to have access to the Decision Tracker and to provide
service to the Application Dimensioning Workbench.

Figure 5 – Data-driven Infrastructure Management capability - components view.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 23 of 87 bigdatastack.eu

Figure 6 shows the sequence of activities and the interplay between the different components
to give support to the BigDataStack seven-step process (operations time).

Figure 6 – Data-driven Infrastructure Management capability - activity view.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 24 of 87 bigdatastack.eu

4. Implementation and Experimentation

This section introduces the experimental scenarios and the methodological approach WP3 is
taking to answer important questions and validate certain hypothesis to develop the Data-
Driven Infrastructure Management capability. The section explains the three prototypes (to
be released at M12, M15 and M18) which are meant to address three different scenarios.
They will let WP3 to verify and validate the solution before facing the full integration with
WP4 and WP5 components and the full deployment of the use cases implementations (WP6).

4.1. Experimental Setting

The BigDataStack use case we have chosen to evaluate and validate the Data-Driven
Infrastructure Management prototypes in the upcoming 7 months is the so-called Connected
Consumer (CC): Multi-sided market ecosystem, provided by ATOS WORLDLINE-EROSKI2. Some
of the highlights of the use case are (please refer to D2.1 for the full description):

• EROSKI, one of the largest distribution companies in Spain with more than 35.000
workers, is collaborating with ATOS in the definition and test of a use-case related to
the grocery business.

• EROSKI needs data insights to better understand how to create and offer added-value
services to their consumers.

• The use case objective is to predict both which products and which promotions are
more likely to be interesting for the customers at the right time. In this way, EROSKI
can adapt the most appropriate message (i.e. product and/or promotion) for each
customer and send it at the right time and through the most appropriate channel, thus
increasing the ROI of their marketing activities.

4.1.1. Scenario 1: Inference without Data Access (M12)

An application engineer wants to deploy a recommendation model implemented by a data
scientist. This recommendation system will provide product recommendations for customers
visiting the EROSKI’s e-commerce web site. Customer events in such a site will continuously
feed the system to improve the recommendation model.

- The analytics application is made of two services (see Figure 7):

o Normalization, which receives customer events and updates the Customer
Preferences table with the customer activity. This table is then used as input
in the Inference process.

o Inference, takes the up-to-date Customer Preferences table and compute
Product Recommendations table, which contains the list of products
recommended per user.

- These application services contain state (i.e. Customer Preferences and Product
Recommendations tables). Therefore, they cannot scale horizontally unless we
provide a persistent storage. In M12 we won’t integrate with a datastore, so we flush

2 https://www.eroski.es/

https://www.eroski.es/

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 25 of 87 bigdatastack.eu

the data to an already made, in-memory, distributed cache, so that the application
services can become stateless and therefore horizontally scalable.

Figure 7 – Experimental scenario 1: Inference without data access (M12) - data flow view.

Requirements and constrains:

• A cache (in-memory) service is required to be deployed alongside the Normalization
and Inference application services to store Customer Preferences and Product
Recommendations tables and hence let them scale out (horizontally).

• The Inference is based on cross-selling by “collaborative filtering.” The algorithm used
will be one of those already implemented in the NumPy library for Spark.

• Different experiments on the performance of the recommendation system will be
accomplished, including the evaluation of latency for the Normalization service and
throughput for the Inference service.

• Different experiments executing the Inference process in batches of different sizes.

• The Inference will be executed on a Spark engine, which will be bundled and deployed
together with the recommendation algorithm in a single container (stand-alone
deployment). The single-node Spark configuration seek to serve as a first step to
deploy Spark operations: In scenarios 2 and 3 the configuration will pass to be a more
realistic multi-node cluster.

Customer events

The analytics application which is the subject of the scenarios is meant to provide service to
EROSKI’s e-commerce web site, specifically, product recommendations to customers. The
analytics application service computes recommendations and the web application uses those
recommendations to decide which products to show to the customer visiting the web; for
each product it gives the option to view the detail of the product, add the product to the car,
or discard that product so that it is not shown again as a recommendation to that customer.

Al these customer actions are captured as events and notified to the Normalization service
which registers them in the Customer Preferences table, which in turn serves as input to the
Inference service to update the Product Recommendations table. The definition of those
events is the following:

• Recommendation shown (attributes: customer id, id recommendation, list of product
ids). It will be used to discard a recommended product if the client has not shown
interest in it (has not displayed it and has not added it to the car) after being shown
as a recommendation a certain (configurable) number of times.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 26 of 87 bigdatastack.eu

• Product added to the cart (attributes: id client, id recommendation, id product). We
will give more weight to the recommendation of this product for this client.

• Product displayed (attributes: id client, id recommendation, id product). We will give
more weight to the recommendation of this product for this client (but less than if you
add it to the car).

• Product discarded (attributes: id client, id recommendation, id product). Directly this
product will be eliminated from the list of product recommendations for the given
customers.

Deployment

Both services are expected to the containerized and deployed on Kubernetes as a single pod.
This means that the scaling of the services will the carried out together, that is, increasing or
decreasing the number of replicas at the pod level and not at the container level (i.e. scaling
in and out).

The other action that can be carried out to dynamically adapt the deployment is to change
the number of vCPUs per container (i.e. scaling up and down).

Quality of service

In different settings, the data scientist will need both processes to run with varying constraints
of response time. Moreover, the throughout will be also an important consideration for the
application engineer.

Other application-specific metrics (e.g., precision of the prediction, the success rate of the
product recommendation) are not considered in this scenario.

4.1.2. Scenario 2: Inference with Data Access (M15)

Scenario 1 at M12 is enhanced by considering the persistence of both Customer Preferences
and Product Recommendations tables in a data store, LeanXcale database.

Figure 8 – Experimental scenario 2: Inference with data access (M15) - data flow view.

Requirements and constrains (refine scenario 1):

• A cache (in-memory) service is required to be deployed alongside the Normalization
and Inference application services to store Customer Preferences and Product
Recommendations tables and hence let them scale out (horizontally).

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 27 of 87 bigdatastack.eu

• The cache (in-memory) service permanently store Customer Preferences and Product
Recommendations tables in a LeanXcale database every time there is write operation.

• The Inference is based on “customer habits” by “individual behavioural analytics.”

o Instead of producing the whole table for all the customers in every run, the
inference process updates just the product recommendations for the
customer/s whole events are received in a given time window.

o The algorithm used will be one of those already implemented in the NumPy
library for Spark.

• The Inference will be executed on a multi-node Spark cluster, so there is a need to
come up with its optimal deployment (e.g., number of nodes, flavour of VMs, etc.).

• Different experiments executing the Inference as streaming analytics in micro-batches
and real-time (i.e., with the arrival of every single event) will be accomplished.

Deployment

The application components are deployed in Kubernetes in the same way as in Scenario 1. For
this scenario, the LeanXcale data base is expected to be deployed and operated as a WP4
prototype. This means it deployment is not part of this scenario, which focuses on the
integration between W3 and WP4 regarding the storage layer and the impact on the analytics
application layer.

Quality of service

Like in the previous scenario, different experimental settings with different QoS targeting low
response time and high throughput will be run.

At least one application-specific metric (e.g., precision of the prediction or the success rate of
the product recommendation) will be considered in this scenario.

4.1.3. Scenario 3: Integration with WP5 and WP4

Scenario 2 at M15 is enhanced by considering the integration with components and services
from WP4 and WP5. For example:

- As the data cleansing pre-processing is a service from WP4, a process to clean and
enrich the events before being submitted to the Normalization will be integrated.
Note this process will be implemented through the Real-time Complex Event
Processing (CEP) resulting from T4.6 (see D4.1).

- As the application process modelling tool is a component from WP5, the
Normalization + Inference process will be declaratively modelled in the tool and the
automated deployment from that tool validated. Note this tool will be implemented
over Node-RED at T5.2 (see D5.1).

The final decision about the set of integrations to be tested at M18 will need to wait until
M15, when WP3 prototypes and scenarios 1 and 2 are validated, and WP4 and WP5 have
finalized to validate their corresponding prototypes and scenarios. The idea is to select those
individually-validated WP3, WP4 and/or WP5 components and features to be evaluated and
validated in an integrated end-to-end BigDataStack use case scenario at M18.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 28 of 87 bigdatastack.eu

4.2. Experimental Plan

This section explains the experimental design, including success criteria (KPIs to evaluate or
hypothesis to validate) at the global (capability) level. It also describes the methodology.

4.2.1. Research questions

The following questions to be addressed in the experimental scenarios have been formulated
in terms of the Data-Driven Infrastructure Management’s conceptual model (see Figure 4).

A 1. How the dynamic
orchestrator and ranking
& (re-) deployment
components share
responsibilities?

2. How do they work
together to provide a
coherent and optimal
runtime adaptation
behaviour?

B 3. How is the interplay
between Dynamic
orchestrator and QoS
Evaluation?

4. What information does
the former need for the
latter? When and how
(through which
mechanism)?

5. Does it need violation
events or violation
metrics (e.g., number of
violations in a given
period)?

C 1. What application-level
metrics do we need to
monitor and how?

2. Can we prepare the
monitoring system to
collect any application-
level metrics related to
QoS attributes of
interest to engineers and
data scientists?

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 29 of 87 bigdatastack.eu

D 1. How does the QoS
evaluation component
get to know what QoS
attributes or KPIs to
evaluate?

2. How does it determine
the relationship between
them and the metrics
collected by the
Monitoring System?

3. Do we need to have a
predefined catalogue of
QoS attributes or KPI
specifications to be
shared among all actors
(sort of QoS ontology)?

 Table 2 – Research questions.

4.2.2. Research method

We will be developing prototypes in the upcoming seven months to validate certain
hypothesis on answers to the above-mentioned questions. These prototypes will be delivered
at M12, M15 and M18, each of them representing milestones in the WP3 research and
innovation plan.

The (experimental) evaluation scenarios have been extracted from the following BigDataStack
use case: Connected Consumer (CC): Multi-sided market ecosystem. Along with the use case
provider ATOS WORLDLINE-EROSKI, we have identified realistic requirements and constraints
to deploy different functionality of their application by using the different prototypes of the
components of the Data-driven Infrastructure Management solution.

The three different scenarios (see section 4.1) focus on different aspects of the solution to
answer different questions (see section 4.2.1). Nevertheless, at M18 it is expected we
showcase the interplay between all BigDataStack capabilities within one or more integrated
end-to-end scenarios from the BigDataStack use cases.

4.3. Implementation Roadmap

Table 3 summarizes the experimentation (evaluation and validation) plan for the Data-driven

Infrastructure Management capability for the upcoming seven months:

 M8 M15 M18

Milestone Prototyping Validation Implementation

Objective The consortium uses
the UBI-provided
OpenStack-based

 The consortium starts
deploying services in
the (cloud native)

 ALL WPs are obligated
to use the (cloud native)
WP3-provided

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 30 of 87 bigdatastack.eu

computing
infrastructure to deploy
and run virtual
machines

WP3-provided
Kubernetes-based
computing
infrastructure to
deploy and run
containers by WP3

Kubernetes-based
computing
infrastructure, when
technically possible.

Success
criteria

The different partners
deploy and test
BigDataStack services
directly on virtual
machines. Ideally, using
containers as unit of
deployment.

ALL WP3 services are
deployed and running
on Kubernetes to test
the platform.

N/A

WP3 tests its tools for
cluster management
(Openshift), monitoring
and dynamic
adaptation

Partners can deploy
their BigDataStack
services on
Kubernetes. At least,
two-three components
of WP4/WP5 are
deployed.

N/A

 Prototypes at M12 and
M15 successfully pass
experimentation
scenarios 1 and 2.

Prototypes at M18 and
M15 successfully passes
experimentation
scenario 3.

Table 3 - Data-driven Infrastructure Management capability experimentation phases.

Table 4 summarizes the Data-driven Infrastructure Management capability implementation

roadmap for the upcoming seven months:

 M12 M15 M18

Scenario 1 2 3

Cluster
Management

OpenStack
integration
Gateway

OpenStack integration
Operators
Gateway

OpenStack integration
Cluster performance
improvements
Operators
Gateway

Dynamic
Orchestrator

Agent
Interpreter

Agent
Interpreter

Agent
Interpreter

Ranking &
Deployment

ADS-Ranking
ADS-Deploy

ADS-Ranking
ADS-Deploy

ADS-Ranking
ADS-Deploy

Triple Monitoring
& QoS Evaluation

SLALite
Prometheus
Graphana
Cluster metrics

SLALite
Prometheus
Graphana
Cluster metrics

SLALite
Prometheus
Graphana
Cluster metrics

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 31 of 87 bigdatastack.eu

Data metrics Data metrics
Networking metrics
Application metrics

Data metrics
Networking metrics
Application metrics

Information-
driven Networking

N/A Native Kubernetes
Networking & Policies
Enforcement
Calico
Istio

Native Kubernetes
Networking & Policies
Enforcement
Calico
Istio

Table 4 - Data-driven Infrastructure Management capability implementation plan.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 32 of 87 bigdatastack.eu

5. Cluster Management

The cluster management component is in charge of both deploying the BigDataStack
components as requested, as well as to keep its status overtime. This will not only include the
containers but the related services and even the OpenShift Origen Kubernetes Distribution
(OKD) cluster itself. In addition, it is in charge to adapt the current deployments to the new
preferred status requested by the above layers, for example to increase the size of the cluster,
or scale up/down a given application.

5.1. Requirements specification

To facilitate the understanding of the design as well as the challenges addressed by this

component, the requirements related to this component have been brought from D2.2 and

literally included into this section. Please note the following requirement tables are compiled

together with the rest of requirements of BigDataStack in D2.2, and that they are included in

here for the reader’s convenience.

 Id Level of detail Type Actor Priority

REQ-CM-01 System FUNC Developer MAN

Name Support OpenShift installation on OpenStack VMs

Description Include the needed steps on the OpenShift installer to handle OpenShift
cluster installation on top of OpenStack resources, i.e, VMs, networks,
volumes, etc.

Additional
Information

This needs to be done in the ‘upstream’ way so that it is supported also
after the project lifecycle. It entails modification to different repositories,
not only the openshift/installer (https://github.com/openshift/installer)
but also other related such as:

• cluster-network-operator3

• cluster-api-provider-openstack4

• gophercloud5

Table 5 - Support OpenShift installation on OpenStack VMs (system requirement).

 Id Level of detail Type Actor Priority

REQ-CM-02 System PERF Developer MAN

Name Avoid double encapsulation of network packages

Description Integrate Kuryr on the OpenShift installer to avoid the double encapsulation
problem due to using 2 different overlays (OpenStack SDN and OpenShift
SDN on top). Kuryr enables containers running on top of OpenStack VMs to
use the same SDN as the VMs itself, i.e., the OpenStack SDN. Thus, avoiding

3 https://github.com/openshift/cluster-network-operator
4 https://github.com/kubernetes-sigs/cluster-api-provider-openstack
5 https://github.com/gophercloud/gophercloud

https://github.com/openshift/cluster-network-operator
https://github.com/kubernetes-sigs/cluster-api-provider-openstack
https://github.com/gophercloud/gophercloud

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 33 of 87 bigdatastack.eu

the double encapsulation and enabling a remarkable throughput gain,
needed for handling the data at the BigDataStack components.

Additional
Information

Similarly, to REQ-CM-01, this needs to be done in the ‘upstream’ way so
that it is supported after the project. It entails modifications to the same
repositories plus the addition of a kuryr operator that will handle the kuryr
related operational actions,

Table 6 - Avoid double encapsulation of network packages (system requirement).

 Id Level of detail Type Actor Priority

REQ-CM-03 System ENV Developer DES

Name Spark operator

Description This operator will be responsible for handling the spark cluster, not only its
installation but also the scaling actions. It will offer an API to the spark
management through the OpenShift API.

Additional
Information

This is related to the dynamic orchestrator, as the optimization actions
could be then simply triggered through standard OpenShift API commands
(e.g., modifying the information at the associated spark ConfigMap)

Table 7 - Spark Operator (system requirement).

 Id Level of detail Type Actor Priority

REQ-CM-04 System ENV Developer DES

Name Accept requests to allocate additional resources to one of the storage layer
components

Description The Adaptable Distributed Storage component can be scaled in/out
independently, considering decisions based on its internal metrics and
handle on its own the reconfiguration of the internal data regions. Due to
this, it is necessary from the Cluster Management to provide a mechanism
that allows the storage layer to request for additional resources or the
release of already provided ones.

Additional
Information

This is closely related to requirement REQ-ADS-04 “Be able to request
additional resources from the infrastructure layer,” described in D4.1.

Table 8 - Accept requests to allocate additional resources to the storage layer (system requirement).

 Id Level of detail Type Actor Priority

REQ-CM-05 System ENV Developer OPT

Name Force the storage layer to release some of its available resources

Description The cluster management might identify that the overall BigDataStack
platform is running out of available resources. To ensure the execution of
crucial components, it might decide to reduce some of the already allocated
resources for some services, for the benefits of others. Due to this, it should
be able to request the release of the storage resources and wait for its

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 34 of 87 bigdatastack.eu

proper response. The storage should be able to reject such requests, in
cases that could lead to data loss.

Additional
Information

This is close related with requirement REQ-ADS-05 “Being able to release
resources and adapt if resources are deallocated from the infrastructure,”
as described in more details in D4.1.

Table 9 - Force the storage layer to release some of its available resources (system requirement).

5.2. Design

To make BigDataStack components widely available and mainly focus on its functionality, we
have selected OpenShift as our cluster management engine over which we will build our
functionality. OpenShift is based on Kubernetes with extra options for DevOps, as well as for
their life-cycle management such as image build automation, deployment automation or
Continuous-Integration/Continuous-Delivery (CI/CD). Having Kubernetes at the core,
provides all the pods (i.e., group of containers with a single IP) orchestration functionality
needed to ensure pods scheduling, replica set management, load balancing, etc.

By using OpenShift at the core of our cluster management, we focus on the following points
at the cluster management layer to better support BigDataStack operations:

• OpenStack integration

• Cluster performance improvements

• Operators

• Gateway

Figure 9 show an overview of the existing components and their interactions. The upper layers
(such as ADS Ranking & Deploy component, or the Triple Monitoring) will communicate with
the cluster management through the OpenShift API. As the figure highlights, this API is
extended by creating different operators that expose the functionality of their respective
components, enabling actions such as scaling a Spark cluster or extend the OpenShift cluster.
Note in the later, that will also entail different subsequent actions that are handled by the
operators. For instance, upon an OpenShift cluster scale up, the operator will need to call
OpenStack to create the needed resources (in this case VMs and Volumes), and then it will
need to configure them: install the required Openshift components, as well as include the
monitorization components to account for the new resources.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 35 of 87 bigdatastack.eu

Figure 9 – Cluster Management - components view.

5.2.1. OpenStack integration

OpenShift clusters can be installed on top of different infrastructures, e.g., directly on physical
servers or on top of VMs in a private (OpenStack) or public cloud (Amazon). Currently, the
OpenShift installer6 supports the installation and management of clusters on top of physical
servers or on top of VMs (on AWS).

As expected, the best performance can be obtained when it is running directly on bare metal
servers. However, to make BigDataStack functionality to a larger group, and due to the wide
use of OpenStack for private clouds, we target the integration of OpenStack into the
OpenShift installer as part of the BigDataStack contributions. This means that we need to
make the installer able to manage OpenStack resources, such as VMs or Volumes. Not only
for the initial installation, but also for the management operations such as cluster scaling
up/down or node failures. Note this support will be integrated as part of the installer as well
as part of the cluster management operators (see next subsection 5.2.3).

6 https://github.com/openshift/installer

https://github.com/openshift/installer

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 36 of 87 bigdatastack.eu

5.2.2. Cluster performance improvements

Due to the BigDataStack requirements, not only related to fast data processing but also
speeding up communications between the different components running on top of
OpenShift, there is a need for performance improvements into the network data plane.
Simply installing OpenShift/Kubernetes on top of OpenStack VMs means that, on the one
hand you have the OpenStack network overlay (to manage the traffic between the VMs), and
on the other hand the OpenShift SDN (e.g., openshift-sdn). This leads to the so-called “double
encapsulation problem” which impose severe performance degradation on the network
throughput (besides the added complexity on network management and debugging upon
failures). To avoid this problem Red Hat has been working on an OpenStack project named
Kuryr7 that enables the usage of OpenStack Software-Defined Networks (SDNs) at the
OpenShift cluster running on top of the VMs, therefore avoiding the double encapsulation
problem. As a result, we plan on also integrating Kuryr on the OpenShift installer as well as
creating an operator for its management (see Figure 10).

Figure 10 – Red Hat Kuryr’s architecture to avoid the “double encapsulation problem.”7

This however also imposes certain requirement on the OpenStack side. The next components
need to be installed and or have specific configuration:

• Octavia (LoadBalancer as a Service) component need to be installed, and with it, its
dependencies such as Barbican

• Neutron needs to be configured with Trunk ports support. Depending on the used ml2
driver, the configuration can be slightly different. For instance, it is out of the box if
OVN is being used, but if ML2/OVS is being used, it needs to be enabled, and the

7 https://docs.openstack.org/kuryr-kubernetes/latest/

https://docs.openstack.org/kuryr-kubernetes/latest/

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 37 of 87 bigdatastack.eu

openvswitch driver needs to be set to enforce security group policies on the
containers.

• Depending on the installed, Heat is also needed to create a stack containing all the
OpenShift related resources, i.e., VMs, Volumes, Networks, LbaaS, …

• And of course, the user quota needs to be adapted to the container deployments
scale, i.e., it will not be enough with just a few ports as each container will be using a
neutron port. Thus, some of the resources quota need to be increased by an order of
magnitude (depending on the side of the OpenShift deployment)

5.2.3. Operators

Operators are a relatively new concept for packaging, deploying and managing
Kubernetes/OpenShift applications. In this context, an OpenShift application is defined as an
application (set of containers, configmaps, CRDs, services, etc.) that is both deployed on
OpenShift and managed by the OpenShift API.

As an example applied to the BigDataStack, we plan to work on a Spark operator which
manages both the installation of the Spark cluster on top of OpenShift, as well as its
operations over time. This cluster can then be managed through OpenShift commands, for
instance scaling it up or down by simply modifying the associated Custom Resource
Definitions (CRDs) where the Spark cluster is defined. Thus, this could be used by the dynamic
orchestrator to easily trigger the optimizations on the deployment.

Figure 11 – Kubernetes operators – conceptual view.

It is common to think of Operators as the runtime that manages an application/service on
OpenShift. It leads us one step closer to manage the cluster in a declarative way, i.e., it
watches over your OpenShift environment and ensures that the state of your cluster or
applications conforms with what you requested. More advanced operators are designed for
handling applications upgrades seamlessly or even perform complete cluster scaling
operations upon resources shortage or failures.

As highlighted on Figure 9, the operators API is offered through the own OpenShift API,
therefore having well-defined primitives, and enabling an easy integration with other

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 38 of 87 bigdatastack.eu

components. The operators need to take care of the actions that needs to be triggered when
the CRD resource is modified, to achieve the new specified status.

5.2.4. Gateway implementation

The gateway for the BigDataStack engine can also be implemented as part of OpenShift, in 2
different ways depending on the final requirements:

- By using OpenShift routes: Route is a way to expose OpenShift services by giving it an
externally reachable hostname, like www.example.com. It has the option to perform
the routing based on paths, i.e., we can use it to redirect some queries to the CEP
component (i.e., www.example.com/cep/…) and others to the Alarm component (i.e.,
www.example.com/alarms/...)

- By using Istio service mesh: A service mesh is a network of microservices that enables
applications and the interactions among them. It offers functionality like load-
balancing, fine grain traffic control, access control, logging, tracing, etc., through
sidecards containers associated to the applications pods. One offered functionality is
Istio-Gateways which controls the exposure of services at the edge of the mesh. This
could be used to tie gateways to specific virtual services that can perform the extra
required actions that the gateway may require besides redirecting the traffic to the
desired endpoint.

5.3. Early Prototype

Initial support for OpenStack has been included into the OpenShift installer to handle the
creation of OpenStack resources.

Figure 12 – Best practices for deploying OpenShift on top of OpenStack.

http://www.example.com/

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 39 of 87 bigdatastack.eu

This support extends the OpenShift installer to create OpenStack VMs and later install the
packages, configuration files, keys, services, etc., needed to install and configure the
OpenShift cluster on top of them. It includes the basic operators and prepares the system for
the new ones to be created as part of the BigDataStack project.

Figure 12 shows the best practices (configuration) for deploying OpenShift on top of
OpenStack. As it can be seen it includes several OpenStack resources types: Networks,
LoadBalancers, VMs, Volumes, etc.

The next table shows the minimum number of each OpenStack resource type that are needed
for a minimal installation of OpenShift on top of OpenStack:

OpenStack Resources Requirements

Virtual Machines - 1 VM for the Bastion that triggers the installation

- 3 VMs for the OpenShift/Kubernetes masters (it can be
reduced to 1 if no HA is needed)

- 3 VMs for the Infrastructure Nodes (this is needed for routes
and registry functionalities)

- 3 VMs for the App nodes (where users’ applications are run)

Volumes - 1 Volume per VM (master, infra, app)

- No need to have a volume for the master

- This is a soft requirement, as the VMs ephemeral disk can be
used too, but this may lead to data lost upon VM deletion

LoadBalancers - 1 needed in front of the master nodes for HA

- 1 needed in front of the infra nodes (for defining routes)

- 1 will be created for each new OpenShift service

Networks - Public net/subnet

- VMs net/subnet

- Pods net/subnet

- Services net/subnet

- +1 extra net/subnet for each OpenShift project (to provide
network isolation between projects)

Floating IPs - 1 for the LoadBalancer in front of the masters

- 1 for the LoadBalancer in front of the infra

- 1 for each service of LoadBalancer type

Routers - 1 for connecting every network

Security groups - There are a few security groups needed for the installation,
plus a few more for the usage. So, recommended limits here
is over 100s, e.g.: 500

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 40 of 87 bigdatastack.eu

OpenStack Resources Requirements

Ports - One port is needed for each VM, plus one per pod. As before,
it could be set to 500us

Table 10 – Cluster management - minimal installation of OpenShift on top of OpenStack.

5.4. Use Case Mapping

N/A, cluster management will be used by all use cases.

5.5. Experimental Plan

The experimental plan will first focus on individual components as well as testing automation.
The initial actions points are:

• Automate OpenShift installation testing to ensure no performance regressions.

• Automate Operators testing to ensure their functionality is not broken by new
updates/additions.

• Ensure BigDataStack operators are agnostic of the infrastructure. This means they are
simply applications running on top of OpenShift and should not be aware of where the
OpenShift cluster is running, e.g., on top of bare metal servers, or OpenStack VMs or
any Public Cloud (AWS, Azure, …). Note some platform dependent operators, such as
kuryr-SDN or other infra related ones, should be aware of the infrastructure as they
are the ones in charge of configuring it.

• Initial integration testing of the different components relying on the cluster manager
and their operators.

5.6. Next Steps

The plan is to continue with the OpenStack integration into the OpenShift installer, with
special focus on Kuryr integration to avoid double encapsulation and therefore creating an
OpenShift installation with improved network performance.

In addition, we will focus on Openshift operators development to easy enable the different
BigDataStack features on the OpenShift cluster. Among others: Kuryr-SDN operator and Spark
operator.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 41 of 87 bigdatastack.eu

6. Dynamic Orchestration

The Dynamic Orchestrator will provide more flexibility and enhanced performance for
applications that utilize the BigDataStack. The application’s performance and compliance with
its requirements will be monitored during runtime and when a requirement violation exists,
the Dynamic Orchestrator will change the application’s deployment in order to comply with
all requirements.

6.1. Requirements specification

To facilitate the understanding of the design as well as the challenges addressed by this

component, the requirements related to this component have been brought from D2.2 and

literally included into this section. Please note the following requirement tables are compiled

together with the rest of requirements of BigDataStack in D2.2, and that they are included in

here for the reader’s convenience.

 Id Level of detail Type Actor Priority

REQ-DO-01 Stakeholder FUNC Developer MAN

Name Correction of Requirements or SLOs Violations

Description When an application or service is running, the orchestrator shall detect the
violation of an application requirement or service level objective (SLO) and
send a signal to the ADS-ranker to trigger a change in the deployment to try
to satisfy the requirements or SLOs.

Additional
Information

N/A

Table 11 - Correction of Requirements and SLOs Violations (stakeholder requirement).

 Id Level of detail Type Actor Priority

REQ-DO-02 Stakeholder FUNC Developer MAN

Name Decision Efficiency

Description When the violation of a requirement has been detected, the orchestrator
shall be able to decide what modification to the deployment (e.g. change
the number of replicas or the number of vCPUs) has the highest probability
of improving the requirements or SLOs satisfaction, as long as any change is
possible (i.e. all resources are at its full capacity due to limits).

Additional
Information

N/A

Table 12 - Decision Efficiency (stakeholder requirement).

 Id Level of detail Type Actor Priority

REQ-DO-03 System FUNC Developer MAN

Name Resources Limits

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 42 of 87 bigdatastack.eu

Description The orchestrator shall be able to receive a trigger from the ADS-Ranker
when a deployment parameter, such as the number of replicas, the number
of vCPUs or the assigned cluster memory, cannot be further increased or
decreased (i.e. this resource has reached its maximum or minimum possible
value) and use this information in its own decisions.

Additional
Information

The complete list of deployment parameters to be taken into account still
needs to be determined.

Table 13 - Resources Limits (stakeholder requirement).

 Id Level of detail Type Actor Priority

REQ-DO-04 Stakeholder FUNC Developer DES

Name Orchestration for Improvements

Description When an application or service is running, the orchestrator shall detect
changes in the system status or inputs (e.g. less new events per minute) and
trigger a change in the deployment that results in lower costs (e.g. to use
less replicas) without compromising the application functioning.

Additional
Information

N/A

Table 14 - Orchestration for Improvements (stakeholder requirement).

6.2. Design

The Dynamic Orchestrator observes the application performance through the monitoring of
runtime system metrics or Key Performance Indicators (KPIs) and Service-Level Objective
(SLO) violations, which are received from the Triple Monitoring and QoS Evaluation
component. When a requirement or SLO violation is detected, the Dynamic Orchestrator
decides how the current deployment should be modified and sends a trigger (along with
deployment change recommendations) to the ADS Ranker to perform the redeployment.

Figure 13 – Dynamic Orchestrator – conceptual diagram.

To implement the Dynamic Orchestrator’s logic, we propose a Reinforcement Learning (RL)
approach that learns about the application’s performance during runtime and learns, based

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 43 of 87 bigdatastack.eu

on its own experience, what kind of changes should be performed to satisfy requirements and
SLOs. The design of the Dynamic Orchestrator has been completed to provide the following
overall functionality (see Figure 14):

Figure 14 – ADS Ranking Interaction Diagram

1. The Triple Monitoring informs the Interpreter about the current system metrics and
the SLO violations.

2. The Interpreter, converts these metrics and SLO violations in states and rewards.

a. The states represent the system status in a discrete space.

b. The rewards indicate the Reinforcement Learning Agent if an executed action
was “good” or “bad” in terms of requirements and SLOs compliance (e.g. if the
requirements and SLO violations disappeared after the execution of an action).

3. The Interpreter sends the current state of the system to the RL (Reinforcement
Learning) Agent and according to this, the RL Agent selects an action that should be
executed by the ADS-Ranker.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 44 of 87 bigdatastack.eu

a. The actions are type of changes in the deployment such as change the number
of replicas, change the number of vCPUs or change the vRAM assigned (note:
these are just some of the changes that are being considered, the full list of
deployment changes still needs to be determined).

b. One of the actions is to keep the current deployment.

4. Once an action has been executed, the interpreter receives the new metrics and SLO
violations, calculates the reward and sends it to the RL Agent.

5. The RL Agent updates its state-action ranking (Q-table in RL terminology).

In addition, the Interpreter updates the current state which will then be observed by the RL
Agent to take the next action.

6.2.1. Adaptable Distributed Storage interplay

The Adaptable Distributed Storage (as described in D4.1) will not rely on the Dynamic
Orchestrator or the Ranking & Deployment to scale in/out its resources; rather, because of
the larger number of metrics available internally, it integrates its own Elasticity Manager
subcomponent that is responsible for taking this kind of decisions for the storage layer. As a
result, the storage can be re-configured automatically, moving data regions across its current
nodes and scale in or out to be adapted under diverse workloads. As these redeployments
are being triggered separately, the Dynamic Orchestrator should be aware of those, and
postpone any redeployment action on the application level until the reconfiguration of the
storage is finished, and the system is balanced.

Therefore, the Dynamic Orchestrator needs to consider there is a second dynamic adaptation
mechanism acting at the storage layer level. This second adaptation component (i.e., Elasticity
Manager) will inform the Dynamic Orchestrator component regarding reconfigurations of the
data storage layer; in fact, this has been specified as a requirement imposed on the Adaptable
Distributed Storage (see REQ-ADS-06 in D4.1) by the Dynamic Orchestrator. More specifically,
the Adaptable Distributed Storage will notify information regarding pending redeployments
of the storage, when the process of data reconfiguration starts and finishes, along with the
current deployment of this layer.

This information helps the Dynamic Orchestrator to determine the best course of action in
this scenario: to wait until the data layer reconfiguration finishes and to re-evaluate the
performance afterwards, or to perform a quick change that will deliver a faster improvement
until the data layer changes take effect.

6.3. Early Prototype

An early prototype of the Dynamic Orchestrator has been developed using a Reinforcement
Learning (RL) based approach. We have chosen RL because it gives the orchestrator the ability
to learn from its own experience. This means that the orchestrator will learn from the
application and the deployment itself during the application runtime, making it more flexible
than any predefined rule-based approach.

The dynamic orchestration problem has been analysed and framed as a RL problem, by
defining the states-action configurations as well as the reward function. The states are
determined by the current metrics of the system, and the actions are referred to the type of

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 45 of 87 bigdatastack.eu

change needed in the deployment to improve the current performance. Because of the
several metrics and actions involved, the Reinforcement Learning agent will have to deal with
a large action-state. To solve this problem, we are looking into preselecting the most relevant
metrics for the application and discretizing its values in order to reduce the states. A similar
preselection step is being considered to reduce the actions space. To have a more in-depth
view of our planned approach, see Section 6.6.

In addition, we have implemented an early prototype of the Dynamic Orchestrator using Q-
learning on Python. In this implementation, we use metrics from the applications’ inputs and
the CPU to define the RL state and three actions: to increase or decrease the number of
replicas or to keep the current deployment. We have tested the approach using a simulated
environment and application, in which the Dynamic Orchestrator performed better than a
rule-based implementation.

6.4. Use Case Mapping

The BigDataStack use case that has been chosen to validate the dynamic orchestrator of
BigDataStack is the Connected Consumer: Multi-sided market ecosystem, provided by ATOS
WORLDLINE-EROSKI.

Most people do their groceries after 6 p.m. since this is the time they finish work and head
home. This creates a peak time for cashiers at supermarkets, in which even though more
checkout points are opened, queues of clients arise. For the Connected Consumer system,
which is shared between all physical locations, this means a peak in recommendation
requests that must be served in a timely manner to avoid further delays in customer service.
To support the higher throughput required, the application deployment needs to change. For
this use case, the Dynamic Orchestrator workflow is as follows:

1. The Triple Monitoring component informs the Interpreter about the current metrics,
with the increase in the rate of incoming events received by the system.

2. The Interpreter translates this into a RL state and sends a message to the Dynamic
Orchestrator.

3. The Dynamic Orchestrator observes the change in the state and decides the best
change in the deployment to be performed.

4. The Dynamic Orchestrator sends a message to the ADS-Ranker that will perform the
change.

5. The Triple Monitoring informs the Interpreter about the new metrics status and the
Interpreter updates the RL state and calculates the reward generated by the change
in the deployment; this reward will be positive if the change improved the throughput
of the system and negative otherwise.

6. The interpreter sends the new state and the reward to the Dynamic Orchestrator.

7. The Dynamic Orchestrator observes the reward and the new state of the system.

8. The Dynamic Orchestrator updates its internal action-state ranking according to the
received reward.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 46 of 87 bigdatastack.eu

9. If the state has come back to normal, i.e. the application throughput keeps up with
the incoming events rate, the Dynamic Orchestrator will take no further action until
the state is changed again.

It is important to note that the Dynamic Orchestrator will manage competing workloads of
different applications by taking into account the resource availability in its decisions, this
means that, for example, if the memory assigned to an application is already at its maximal
value, then the Dynamic Orchestrator will not consider increasing the memory size as an
action.

6.5. Experimental Plan

To evaluate the performance of the Dynamic Orchestrator, we plan to test its behaviour
throughout the use case described above in section 6.4. The tests will be performed
simulating a single as well as multiple workloads. Specifically, we will evaluate the
performance by monitoring the following aspects:

• Time to adapt: Dynamic Orchestrator should detect the need to change and decide
the change rapidly, to provide the highest SLO/Requirements satisfaction rate possible

o KPIs: SLO/Requirements satisfaction rate, time measured from when
SLO/Requirement violation started to when decision to change deployment is
taken.

• Change effect: the change decided by the Dynamic Orchestrator should improve the
current situation and, if possible, satisfy all the SLO/Requirements

o KPIs: SLO/Requirements satisfaction rate, SLO/Requirements metrics before
and after change was executed.

• Time to learn to adapt: Reinforcement Learning starts choosing actions randomly until
it properly learns about its environment and how the actions taken affect it, in this
setting it is very important to observe how long does it take for the algorithm to
acquire enough knowledge to be able to adapt properly.

o KPIs: time (probably in RL steps) from boot up to when SLO/Requirements
satisfaction becomes stable

6.6. Next Steps

In the future, we plan to further develop the logic for the Dynamic Orchestrator. In particular,
there are two challenging aspects:

• Several metrics can be used to define the state. The states space must be limited in
order to ensure the RL agent learns about its environment in few steps so the
application can offer a high requirements and SLO satisfaction rate since its initiated.
The first step to do this is to discretize the metric values properly, creating meaningful
bins in which the metric values will be accommodated. The second and maybe even
more important step, is to limit the number of metrics to be taken into account, if
properly chosen, the right action for every state will be quickly learnt, otherwise, the
RL agent will not have enough information to take decisions or will take too long to
learn what to do in each state.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 47 of 87 bigdatastack.eu

• Several deployment changes can be performed by the Dynamic Orchestrator and in
different way. Each deployment change will be an action and in the same way that a
large states space can negatively affect the learning, a large actions state will
compromise the reinforcement learning logic performance. To address this problem,
it is important to define what actions are most meaningful for each deployment and
in which way they should be implemented, i.e. by giving a determined value for a
parameter or by just asking the ADS-ranker to increase/decrease it. In addition, the
available actions will vary according to the characteristics of the deployment, e.g. is
the deployment in a private or public cloud?

In addition, we plan to do more tests to evaluate the Dynamic Orchestrator’s performance
and robustness to different runtime situations and with different applications.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 48 of 87 bigdatastack.eu

7. ADS Ranking & Deploy

The role of the ranking and deployment module of Big Data Stack is to decide how to deploy
the user’s application and then operationalize that deployment via a container orchestration
platform (e.g. Kubernetes). Ranking and deployment is part of the application deployment
back-bone that enables a user to get their application running on a hardware cluster. Prior to
ranking and deployment, the user will have defined in a conceptual manner what their
application is comprised of and how the different services within that application interact.
This conceptual definition will have been expanded into multiple candidate deployment
pattern (CDP) playbooks representing different ways that the application/services can be
mapped onto compute resources for deployment. Finally, these CDP Playbooks will have been
benchmarked, providing estimated resource usage and quality of service information for
each. Ranking and deployment takes these CDP Playbooks and associated benchmarking
information as input.

As its name suggests, ranking and deployment is split into two distinct components, namely:
ADS (Application and Data Services) Ranking and ADS (Application and Data Services)
Deployment. ADS Ranking is responsible for taking the different CDP Playbooks and
associated benchmarking information, and deciding which CDP Playbook is the most suitable
based on the user requirements and preferences. This has two uses within BigDataStack,
namely: to determine what compute resources to request for a user’s application when first
deploying it (see the BigDataStack operations phase Step 1); and to re-estimate compute
resource needs in cases where a current deployment is predicted to miss one or more Service-
Level Objectives (see the BigDataStack operations phase Step 7). Meanwhile, ADS
Deployment is responsible for taking the selected CDP Playbook and using the configuration
information contained within, to operationalize deployment of the user’s application on the
cloud infrastructure (see the BigDataStack operations phase Step 4).

7.1. Requirements specification

To facilitate the understanding of the design as well as the challenges addressed by this
component, the requirements related to this component have been brought from D2.2 and
literally included into this section. Please note the following requirement tables are compiled
together with the rest of requirements of BigDataStack in D2.2, and that they are included in
here for the reader’s convenience.

This section contains the requirements for both the ADS Ranking and ADS Deployment
components. For reference, ADS Ranking requirements are denoted REQ-ADSR-XX, while ADS
Deployment requirements are denoted REQ-ADSD-XX.

 Id Level of detail Type Actor Priority

REQ-ADSR-01 System FUNC Application
Dimensioning
Workbench

MAN

Name Ingest Candidate Deployment Playbooks and Benchmarking Information

Description The Application Dimensioning Workbench sends a series of candidate
deployment patterns (CDP) playbooks and benchmarking information to
the ADS Ranking component. ADS Ranking needs to collect all these

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 49 of 87 bigdatastack.eu

patterns for subsequent scoring/ranking based on the user requirements
and preferences.

Additional
Information

Ingestion occurs via a common publisher/subscriber platform (RabbitMQ).

Table 15 - Ingest Candidate Deployment Playbooks and Benchmarking Information (system requirement).

 Id Level of detail Type Actor Priority

REQ-ADSR-02 System FUNC Developer MAN

Name Deployment Suitability Feature Extraction

Description Once a series of candidate deployment pattern playbooks and associated
benchmarking information has been received, the next step is to determine
how each pattern is predicted to perform based on the benchmarking
information. In effect, this involves defining a series of functions that relate
individual or groups of user requirements to the predicted performances
produced by benchmarking. The output of this step is a vector
representation for each CDP playbook, representing how that playbook is
predicted to fair under different user requirements.

Additional
Information

Features produced here are dependent on the capabilities of the
benchmarking system and the amount of information the user provides in
terms of requirements and preferences.

Table 16 - Deployment Suitability Feature Extraction (system requirement).

 Id Level of detail Type Actor Priority

REQ-ADSR-03 System FUNC Developer MAN

Name CDP Playbook Scoring (Heuristic)

Description Given a vector representation for a CDP Playbook, we next need to map
this vector into a single score, representing how suitable that playbook will
be overall (such that we can compare different CDP Playbooks). This
involves combining the different elements within the vector (that each
represent some aspect of pattern suitability, such as cost, or predicted
compute wastage). The first version of this will use a hand-tuned linear
combination.

Additional
Information

N/A

Table 17 - CDP Playbook Scoring (Heuristic) (system requirement).

 Id Level of detail Type Actor Priority

REQ-ADSR-04 System FUNC Developer DES

Name CDP Playbook Scoring (Supervised)

Description Given a vector representation for a CDP Playbook, we next need to map this
vector into a single score, representing how suitable that playbook will be

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 50 of 87 bigdatastack.eu

overall (such that we can compare different CDP Playbooks). This involves
combining the different elements within the vector (that each represent
some aspect of pattern suitability, such as cost, or predicted compute
wastage). The second version of this will learn how to combine the elements
based on logging information from past deployments. Models may be non-
linear in nature.

Additional
Information

Depends on REQ-ADSR-06.

Table 18 - CDP Playbook Scoring (Supervised) (system requirement).

 Id Level of detail Type Actor Priority

REQ-ADSR-05 System FUNC Developer MAN

Name CDP Playbook Selection

Description Once all candidate deployment patterns have been scored, the final step is
to select one of those patterns to pass to ADS Deployment. In many cases
this will simply involve selecting the highest scoring pattern. However, the
user may have the option to select an alternative configuration at this stage.

Additional
Information

N/A

Table 19 - CDP Playbook Selection (system requirement).

 Id Level of detail Type Actor Priority

REQ-ADSR-06 System FUNC Developer DES

Name Supervised Model Training

Description To support REQ-ADSR-04, a supervised scoring model is needed. To react to
changes in the deployment environment over time, this model needs to be
frequently updated based on new information from current deployments.
This model needs to be trained based on logging data being collected by the
Triple Monitoring Framework.

Additional
Information

Requires logging information produced by the Triple Monitoring Framework
and stored in the Central Decision Tracker.

Table 20 - Supervised Model Training (system requirement).

 Id Level of detail Type Actor Priority

REQ-ADSR-07 System FUNC Developer MAN

Name CDP Playbook Re-Scoring

Description It is envisaged that in (rare) scenarios, an ongoing application deployment
will fail to meet the user’s quality of service requirements. This might occur
due to assumptions on data input volumes being violated for instance. In
this case, we may not be able to solve this issue without fully redeploying
the user application with different resources. To support such re-

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 51 of 87 bigdatastack.eu

deployment activities, ADS Ranking supports a re-scoring function, where a
previous set of CDP playbooks for a user’s application can be re-scored
based on updated preferences provided by the Big Data Stack Orchestrator,
as well as live data about how the previous deployment performed (and
failed).

Additional
Information

N/A

Table 21 - CDP Playbook Re-Scoring (system requirement).

 Id Level of detail Type Actor Priority

REQ-ADSD-01 Stakeholder FUNC Application
developers

MAN

Name Performance Measurability

Description Each environment should be measurable according to a set of
characteristics, that is, Key Performance Indicators (KPIs).

Additional
Information

The KPIs considered must include:

• vCPUs

• Memory

Table 22 – Performance Measurability (stakeholder requirement).

 Id Level of detail Type Actor Priority

REQ-ADSD-02 Stakeholder FUNC System MAN

Name Standards-based Playbook

Description The description of the environments and deployments (i.e., playbooks) will
follow a standard specification language

Additional
Information

N/A

Table 23 - Standards-based Playbook (stakeholder requirement).

 Id Level of detail Type Actor Priority

REQ-ADSD-03 System FUNC System MAN

Name Standard deployment information

Description When communicating with other components, as described in Section 7.2,
these components will use the playbook standard defined in REQ-RD-02.

Additional
Information

N/A

Table 24 - Standard deployment information (system requirement).

 Id Level of detail Type Actor Priority

REQ-ADSD-04 System FUNC System MAN

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 52 of 87 bigdatastack.eu

Name Application Scoring System

Description The ranking system evaluates each environment’s deployment, which keeps
track of the most suitable configuration for each application. When trying a
deployment configuration for a new application, this ranking will be used to
select the most suitable one.

Additional
Information

The evaluation will be done following the measurements defined in REQ-
RD-01.

Table 25 – Application Scoring System (system requirement).

 Id Level of detail Type Actor Priority

REQ-ADSD-05 System FUNC Cluster
management
component

MAN

Name Compatibility with Kubernetes

Description Since the technology used to run and orchestrate the applications is based
in Kubernetes (OKD8). Thus, the ADS-Deployment component is required to
be compatible with Kubernetes.

Additional
Information

The ADS-Deploy component should translate from the playbook standard
defined in REQ-RD-01 into Kubernetes primitives.

Table 26 - Compatibility with Kubernetes (system requirement).

 Id Level of detail Type Actor Priority

REQ-ADSD-06 System FUNC MAN

Name Synchronous communication

Description The communication with and within both components should be done
through an API REST.

Additional
Information

N/A

Table 27 - Synchronous Communication (system requirement).

7.2. Design

In this section we summarize the main architectural design for the Ranking and Deployment
module. More precisely, we first introduce the two components and how they interact with
other components around them in the larger Big Data Stack platform, and secondly, we define
the internal activity flow for ADS Ranking and ADS Deployment.

The high-level architecture of the Ranking and Deployment module is illustrated in Figure 15.
The two main components within the Ranking and Deployment module are coloured in green,
while other components that the module depends on or are dependent upon the module are
coloured in blue. When an application is sent for deployment, it first passes through the
Application Dimensioning Workbench for CDP (Candidate Deployment Pattern) Playbook

8 OKD - https://www.okd.io/

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 53 of 87 bigdatastack.eu

creation and benchmarking. The resultant CDP Playbooks and benchmarking information are
sent to ADS Ranking via an interface (First-Time Ranking Interface).

Figure 15 – Ranking and Deployment Module Architecture.

ADS Ranking uses information within each CDP Playbook along with historical data obtained
from the Central Decision Tracker to score and then select one CDP Playbook for deployment.
This is CDP Playbook is sent via the Deployment Interface to ADS Deployment, where it is used
to request resources for the user’s application, using the Cluster Management component
(See Section 5). This sequence of actions is what we refer to as ‘first-time deployment’ and
represents the case where a user comes with a new application to deploy. It is also worth
noting that a separate component, referred to as the Dynamic Orchestrator (not to be
confused with the container orchestration platform) monitors first-time deployment via the
different interfaces, as it is responsible for triggering actions based on deployment state (e.g.
if we cannot find a suitable deployment). Additionally, due to REQ-ADSR-07, the Dynamic
Orchestrator may request the re-scoring of CDP Playbooks directly in the case where
application failure post-deployment is detected. This is achieved via a bespoke Re-Ranking
interface provided by the ADS Ranking component.

The ADS Ranking component has two main ‘modes’ of operation, which directly relate to the
first-time deployment and re-scoring actions discussed above.

Figure 16 provides an overview of the interactions involved in these two operation modes.
Under the first-time deployment action, the Application Dimensioning Workbench sends CDP
Playbooks and benchmarking information to ADS Ranking. ADS Ranking then ingests those

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 54 of 87 bigdatastack.eu

CDP Playbooks (REQ-ADSR-01), reformatting them into a form that can be easily processed.
Next, each CDP Playbook is transformed into a feature vector by CDP Playbook Feature
Extraction (see REQ-ADSR-02). These features represent the predicted performance of the
user’s application under expected average and peak load given the suggested compute
resources.9 Once a CDP Playbook has been vectorised, it is next subject to scoring based on
the user’s requirements and preferences. The scoring function may be unsupervised (REQ-
ADSR-03) or may use a machine learned model trained on previous application deployments
(REQ-ADSR-04). Finally, the scored CDP Playbooks are subject to selection, where the most
suitable one will be picked as the template for application deployment (REQ-ADSR-05). The
selected CDP Playbook is then passed to ADS Deployment to operationalize the physical
deployment.

Figure 16 – ADS Ranking Interaction Diagram

9 Note it is anticipated that these predicted performances will be subject to some degree of error. For example,
benchmarking statistics (over a small data sample) may not reflect true deployment performance. Moreover, in
opaque cluster scenarios (see Section 3.2), services from other users may share hardware with our user’s
application, potentially causing performance degradation that could not be predicted during benchmarking. It
is expected that such error may be handled by including compute resource ‘head-room’ when estimating
resources, and if that is not sufficient then corrections will be possible post-deployment via run-time adaptations
by the Dynamic Orchestrator.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 55 of 87 bigdatastack.eu

The second mode of operation is re-ranking. This is based on requirement REQ-ADSR-07, i.e.
in cases where a prior deployment has been deemed as no longer suitable, we need to select
a new CDP Playbook. In this mode, the Dynamic Orchestrator triggers the re-ranking process,
providing updated application preferences based on the reason-of-failure for the prior
deployment. ADS Ranking will retrieve the full set of CDP Playbooks for the user’s application
(from the Central Decision Store) and then perform scoring and selection in a similar manner
to the first-time deployment mode.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 56 of 87 bigdatastack.eu

Figure 17 – Interaction diagram of the ADS Deployment and Ranking design

Figure 17 shows the interaction between ADS-Deploy and the other components in the Big
Data Stack platform. The request for a new deployment by the ADS-Ranking component starts
a new thread to process a CDP Playbook. The ADS Ranking component communicates this
deployment request to ADS Deployment, which interprets the CDP Playbook and proceeds

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 57 of 87 bigdatastack.eu

with the deployment of the application. There are three possible outcomes to this
deployment process:

1. The requested compute resources are available: In this case, ADS deployment sets up
the environment, deploying and starting the user service. Once the environment has
been fully set-up, the ADS Deployment component communicates this deployment
to the Dynamic Orchestrator.

2. The cluster has the available compute resources but some of those resources are
busy: In this case, the environment allocation will be scheduled for when the cluster
has sufficient free compute resources. ADS Deployment component will
communicate the scheduled state of the user application to the Dynamic
Orchestrator, which can opt to either leave the application to wait for resources to
become available or otherwise cancel the deployment process (e.g. at the behest of
the user).

3. The cluster does not have sufficient available resources: In rare scenarios, it may be
the case where the estimated compute resources needed to run the user’s
application are greater than can be provided by the cluster. This might happen if using
a small dedicated cluster for instance, or in cases where a resource usage cap is in
place. In this case, deployment is cancelled, and ADS Deployment component will
communicate this to the Dynamic Orchestrator, which can alert the user.

Once a user’s application has reached a running state (i.e. the resources were immediately
available or became available while the application was scheduled), the Dynamic Orchestrator
calls the Triple Monitoring Engine and QoS Evaluation (TME), described in Section 8, for
monitoring of the deployment. The TME evaluates periodically if the deployment agrees with
an agreed minimum QoS between the system and the user. Every time that the minimum QoS
is not respected, this data is communicated to the Dynamic Orchestrator. This may trigger re-
scoring by ADS Ranking (among other possible run-time adaptations). In this case ADS ranking
proceeds to re-evaluate the list of available CDP Playbooks, based on to their performance,
ultimately leading to the user’s application being re-deployed with a new set of compute
resources.

7.3. Early Prototype

At M11 the first Tier 0 implementation of the ADS Ranking component has been developed
and tested. This version provides CDP Playbook ingestion (REQ-ADSR-01), a basic level10 of
Deployment Suitability Feature Extraction (REQ-ADSR-02), CDP Playbook Scoring (Heuristic)
(REQ-ADSR-03). This component is deployable via an Apache Spark cluster. At M11
development of the ADS Deployment component has not started.

10 Subsequent Tiers will include more advanced feature extraction capabilities as new benchmarking data
becomes available from advances made from the development of the application dimensioning workbench.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 58 of 87 bigdatastack.eu

Figure 18 – ADS Test System, Playbook View.

In addition, to facilitate the testing of the Ranking and Deployment functionality, a test system
was created. This test system was developed to provide a way for BigDataStack developers to
analyse the inner workings of application deployment, in general, and the ADS Ranking
functionality, in particular. This is needed in part because the Ranking and Deployment
functionalities are largely invisible to the BigDataStack users, and hence a separate test
system is needed to observe its function.

More precisely, the test system is designed to isolate the Ranking and Deployment
functionality from the rest of the BigDataStack platform such that it can be tested separately.
It is designed to simulate and allow the user to customise the output of the Application
Dimensioning Workbench, such that ADS Ranking can be tested under different experimental
scenarios. The test system is comprised of four main screens. First, illustrated in Figure 18At
M11 the first Tier 0 implementation of the ADS Ranking component has been developed and
tested. This version provides CDP Playbook ingestion (REQ-ADSR-01), a basic level of
Deployment Suitability Feature Extraction (REQ-ADSR-02), CDP Playbook Scoring (Heuristic)
(REQ-ADSR-03). This component is deployable via an Apache Spark cluster. At M11
development of the ADS Deployment component has not started.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 59 of 87 bigdatastack.eu

, is the Playbook view. This allows the user to load pre-defined application Playbooks, which
can then be customised (using the controls on in the right pane) to create a test scenario. The
second view is the simulated dimensioning view, which is responsible for configuring the
output of the application benchmarking (more information on this can be found in deliverable
5.1). This is important as benchmarking will be imperfect, hence we need a means to model
benchmarking accuracy, as that will in turn impact the performance downstream in ADS
Ranking. The third view is the ADS progress view. This view is simply to allow the tester to
monitor the time taken for dimensioning, ranking and deployment.

Figure 19 – ADS Test System, Ranking View.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 60 of 87 bigdatastack.eu

The fourth view is the ranking view, illustrated in Figure 19. The ranking view provides
statistical information about how each CDP Playbook was scored in terms of suitability with
respect to the user’s requirements and preferences. For example, this may include a
comparison of how the expected cost of the deployment relates to the amount the user is
willing to pay; or comparing the expected CPU usage of the user’s services against the
hardware being requested. This information allows the developers of the ADS Ranking
component better understand where deployments may fail, and hence how to improve the
CDP Playbook scoring algorithm (REQ-ADSR-03 and REQ-ADSR-04).

7.4. Use Case Mapping

ADS Ranking and ADS Deployment components are not explicitly linked to any particular use-
case, as it forms part of the underlying pipeline for application deployment, which is required
for all use-cases in the project. Indeed, the identification of suitable CDP Playbooks for a user’s
application is critical, such that sufficient resources to support that application are identified
and requested during deployment. For example, for the ATOS-WORDLINE-EROSKI scenarios
(SCE-CC-01 and SCE-CC-02), large amounts of processing capacity is needed for learning
recommendation models for the connected consumer. It is the role of ADS Ranking to identify
the compute resources (represented by a CDP Playbook) that will enable this learning in a fast
and efficient manner. Meanwhile, the ADS Deploy component is responsible for the
requesting resources for required services on the target cluster. As such, ADS Ranking and
ADS Deployment can be considered an implicit requirement for all user scenarios (SCE-RSM-
01, SCE-RSM-01, SCE-CC-01, SCE-CC-02, SCE-IMB-01 and SCE-IMB-02).

7.5. Experimental Plan

The development of ADS Ranking is a primarily research-orientated activity, as how to
effectively score user application deployments based on benchmarking information,
hardware availability and user requirements/preferences is an open problem. Meanwhile, the
development of ADS Deployment is primarily an engineering activity, building on top of
existing software deployment platforms such as Kubernetes and OpenShift. As such, we focus
primarily on the experimental evaluation of ADS Ranking in this section. In Section ¡Error! No
se encuentra el origen de la referencia. we provide a short summary highlighting the
challenges of identifying deployment configurations for a user’s application. Section 0
introduces our proposal for adapting state-of-the-art learning to rank approaches for this
task. Finally, in Section 0 we discuss how we plan to evaluate the effectiveness of ADS Ranking.

7.5.1. Background and Related Work

Currently, companies that wish to deploy large-scale applications onto cloud infrastructure
tend to follow one or two strategies. First, if they are developing/have developed their
application in-house and have the technical expertise, the developers or other IT experts
within the company will be responsible for identifying suitable hardware for that application,
as well as subsequent deployment and maintenance on the cloud. On the other hand, if local
expertise is not available, companies may make use of external “cloud consultants” (e.g.
https://cloudspectator.com/) to handle the benchmarking and optimization of their
workloads for a fee. BigDataStack aims to innovate in this space by providing the
benchmarking and optimization of cloud deployments automatically, eliminating the need for

https://cloudspectator.com/

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 61 of 87 bigdatastack.eu

experts to manually test and monitor user applications. ADS Ranking forms a critical link in
achieving this, as it provides the means to automatically relate benchmarking information
about an application to the user’s requirements and preferences, which previously required
expert knowledge.

To our knowledge, there has been no prior works that examine how to tackle automated
identification of suitable cloud deployment configurations for an arbitrary user application to-
date. However, there has been prior research into the benchmarking tools previously
employed by the experts that that provide valuable insights into how to tackle this problem.
For example, CloudSuite [7] and DCBench [15] are benchmark suites for scale-out cloud
services. What is important to learn from these tools is how each application defines different
deployment targets and constraints. For example, for a video streaming service, the degree
of video buffering that the user sees is what matters, while for a Web host, low response
latency is critical. Moreover, the targets and constraints of an application may change based
on the user scenario. For instance, for an application, training a complex machine learned
model [14], the user may only care about time-to-completion if the model is needed to be
ready for the next day’s processes. Meanwhile, in less time critical settings, minimizing cost
may be the main requirement [8]. ADS Ranking aims to provide a solution to identifying
suitable compute resources for a user’s application that will satisfy such goals automatically,
where these goals are specified by the user (as requirements and preferences).

However, this is challenging for two reasons. First, given the diverse and continually
expanding number of quality of service targets/constraints that a user might desire, modelling
each individually is impractical, necessitating a more general solution. Second, modern
application workloads are complex in that they can span multiple inter-dependant functions
or services with very different performance profiles. This requires model that can capture the
interactions between those functions/services under different loading scenarios, to avoid
application processing bottlenecks derived from a single function or service receiving
insufficient resources.

Learning to rank techniques are machine learned algorithms, which take as input a set of
features describing items, and learns how to effectively combine of those features to create
a score for each of those items indicating how related they are to a separate feature vector
(commonly referred to as the ‘query’) [10]. The most common application of learning to rank
techniques are Web search engines, where the items to be scored are Web documents and
the separate feature vector is the user’s search query (hence why we refer to this separate
feature vector as the query, although it is important to note that the separate feature vector
can be used to represent anything). The goal of learning to rank is to find the feature
combination (referred to as a model) which results in the most effective ranking for a set of
items given a query. In the next section we summarize how we propose to adapt learning to
rank techniques to tackle the challenges of identifying the most effective CDP Playbook for a
user’s application.

7.5.2. Learning to Rank CDP Playbooks

To tackle the challenges of identifying the most effective deployment configuration for a
user’s application, we propose to extend current state-of-the-art learning to rank approaches.
The core idea underpinning this is that CDP Playbooks can be seen as our items to rank, where
we can represent each CDP Playbook by aggregating: 1) information provided by the user

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 62 of 87 bigdatastack.eu

about their application/services; 2) the suggested compute resources contained within the
CDP Playbook; and 3) the benchmarking data obtained from the application dimensioning
workbench. Our ‘query’ is then the user’s defined requirements and preferences. The goal of
learning to rank in this case is to learn a model that effectively combines all the aggregated
CDP Playbook information into a single score that represents how suitable that CDP Playbook
is based on the user’s requirements and preferences. In effect, this model aims to learn how
value the features of an CDP given different sets of requirements and preferences. This model
can be used to score all CDP Playbooks generated for the user application, where the highest
scoring is likely the best to use to deploy the user’s application.

However, adapting learning to rank techniques into this different domain brings with it three
additional challenges. First, we need to define an effective series of features using which we
can represent each CDP Playbook. As noted above, to achieve this, we have three potential
sources of evidence, in the form of application/service information provided by the user,
compute resource information contained in the CDP Playbook itself and benchmarking
statistics provided by the application dimensioning workbench. This CDP Playbook evidence
needs to be aggregated and normalized to form meaningful features. Second, as noted in our
discussion of the challenges of identifying hardware configurations that meet deployment
targets and constraints, there are a large and diverse set of user requirements and
preferences. Hence, we need an effective approach to map these requirements and
preferences into a generic feature vector (our ‘query’). Finally, to learn an effective learning
to rank model, a large training dataset is needed. As no-one has attempted to use machine
learning approaches for this task to-date; such a training dataset does not exist. As such, we
will need to develop such a dataset during the project.

These are the three main research challenges that will be investigated in Y2 of the
BigDataStack project within Task 3.3.

7.5.3. Evaluation Methodology and Metrics

The ADS Ranking and ADS Deployment components are planned to be initially tested as part
of the evaluation scenarios planned at M12 (Inference without Data Access, see Section
4.1.1¡Error! No se encuentra el origen de la referencia.) and M15 (Inference with Data
Access, see Section 4.1.2). Under these evaluation scenarios a single user application will be
deployed by the BigDataStack platform and instrumented under variable load conditions.
These initial tests will be performed in a dedicated cloud scenario, without significant
competition for cluster resources. Note that we anticipate that this testing will include only
unsupervised versions ADS Ranking, as the core research needed to facilitate future learning
to rank based versions will be being performed in parallel.

- Evaluation Setting: For each evaluation scenario, an application Playbook will have
been created by an up-stream process that describes the application services that are
to be deployed. This Playbook will be ingested by the Pattern Generation component,
which will produce a series of candidate deployment pattern playbooks (CDP
Playbooks). Each playbook will have been subject to benchmarking by the application
dimensioning workbench. Each CDP Playbook will be processed by ADS Ranking,
resulting in the generation of a suitability score for each. The effectiveness of ADS
Ranking will be evaluated based on how many of the top-scored CDP Playbooks would
have been suitable based on the user’s requirements. To create a ground truth for

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 63 of 87 bigdatastack.eu

whether each CDP Playbook was in fact suitable, the user’s application will be
physically deployed using that CDP Playbook as its deployment configuration. A CDP
Playbook is considered suitable if it passes all of the user’s requirements during its
run-time. The ground truth may additionally include multiple suitability ‘grades’ based
on to what extent the CDP Playbook also met the user’s preferences.

- Metrics: To evaluate effectiveness of a ranking of CDP Playbooks deployed by the ADS
Ranking component, we will use standard ranking metrics from the information
retrieval literature. In particular, we will report:

• Precision@1: This evaluates whether the top ranked CDP was suitable for the
user’s application

• Mean Average Precision (MAP): Average precision (at a particular rank) is the
proportion of suitable CDP Playbooks down to that rank. MAP is average precision
calculated at the maximum rank over multiple application deployments. [13]

• NDCG@5: Discounted Cumulative Gain (DCG) is a measure the usefulness, or gain,
of an item based on its position in a ranking. Total gain is accumulated starting
from the top of the result and moving downwards to a set rank (@N). Gain of each
result is discounted at lower ranks and can incorporate (suitability) grades. NDCG
is DCG normalized across (in our case) different application deployments to
account for some deployments being easier to find suitable patterns for than
others. [9]

7.6. Next Steps

It is currently envisaged that there will be three further releases of the ADS Ranking
component and two releases of the ADS Deployment component during BigDataStack,
integrating more advanced functionality:

- ADS Ranking

o Tier 1: This second version of the ADS Ranking component will integrate
directly with the first iteration of the application dimensioning workbench to
obtain benchmarking features. This version will also include the first
implementation of the re-ranking functionality (REQ-ADSR-07).

o Tier 2: This version will transition from using current heuristic scoring of CDP
Patterns to the first version of our proposed learning to rank approach.

o Tier 3: This version will include our second iteration of the learning to rank
approach with support for reinforcement learning from live data collected by
the Triple Monitoring Framework.

- ADS Deploy

o Tier 1: This Version of the ADS Deploy component will see to integrate with the
existing technologies (REQ-ADSD-05) for containerization and provide a
working prototype, able to deploy an environment from a given Playbook CDP.

o Tier 2: This version of the ADS Deploy will implement all the synchronization
functionalities (REQ-ADSD-06) needed for the interaction with the component.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 64 of 87 bigdatastack.eu

This implies that it will be integrated with the ADS Ranking and Dynamic
Orchestrator components.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 65 of 87 bigdatastack.eu

8. Triple Monitoring & QoS Evaluation

The triple monitoring component collects and stores several metrics on performance at an
application, data service and resource cluster level. These metrics are used to dynamically
adapt the environment and ensure the best QoS (Quality of Service) to the user. When a user
requests a service from BigDataStack, a minimum QoS is agreed between the user and the
system. At runtime, certain metrics or Key Performance Indicators (KPI) are collected by the
Triple Monitoring Engine and evaluated against the agreed Service-Level Objectives (SLOs) by
the QoS Evaluator.

8.1. Requirements specification

To facilitate the understanding of the design as well as the challenges addressed by this
component, the requirements related to this component have been brought from D2.2 and
literally included into this section. Please note the following requirement tables are compiled
together with the rest of requirements of BigDataStack in D2.2, and that they are included in
here for the reader’s convenience.

 Id Level of detail Type Actor Priority

REQ-TM-01 Stakeholder FUNC Developer MAN

Name Regular recording of QoS metrics

Description When a user’s application is deployed, the Triple Monitoring Framework
monitors that application, tracking statistical information about its
operation and associated QoS data, including network, data storage,
virtualization layers, etc.

This data is needed to support the learning of ranking models by ADS-
Ranking service (part of Application and Service Deployment; see REQ-
ADSR-03) and regularly saved in a centralised data store for later access.

Additional
Information

Input:
- Candidate Deployment Pattern (application identifier from this is

the primary key for saving monitoring data for an application)
Output:

- Deployment QoS Snapshot (monitoring/QoS data, every few mins)
Service Dependencies:

- Centralised Data Store (Storage Service)
-

This is implemented over Prometheus11 as the monitoring collector.

Table 28 - Regular recording of deployment QoS information (stakeholder requirement).

 Id Level of detail Type Actor Priority

REQ-TM-02 Stakeholder FUNC Developer MAN

Name QoS violation alert

11 Prometheus. https://prometheus.io/

https://prometheus.io/

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 66 of 87 bigdatastack.eu

Description If the system does not respect the agreed QoS, an alert is raised.

Additional
Information

This alert is used internally to evaluate the performance of an
environment, relating to REQ-RD-004.

Table 29 - QoS violation notification (stakeholder requirement).

 Id Level of detail Type Actor Priority

REQ-TM-03 Stakeholder FUNC Developer DES

Name QoS violation monitoring

Description QoS violations are also monitored and shown to the user/admin.

Additional
Information

N/A

Table 30 - QoS violation monitoring (stakeholder requirement).

 Id Level of detail Type Actor Priority

REQ-TM-04 System FUNC Developer MAN

Name Metrics pusher

Description The metric pusher retrieves KPI data, clean them and ingest them into the
monitoring collector (Prometheus).

Additional
Information

The metrics pusher is used when the exporter approach is impossible to
apply. This solution will be very useful for getting application specific
metrics (it’s not approved yet).

Table 31 - Metrics pusher (system requirement).

 Id Level of detail Type Actor Priority

REQ-TM-05 System FUNC Developer DES

Name API REST for accessing the collected monitoring metrics

Description The metrics are accessible through an API REST.

Additional
Information

This component translates client’s requests to Prometheus request
compatible. Grafana12 will be used for visualization.

Table 32 - Monitoring metrics API REST (system requirement).

 Id Level of detail Type Actor Priority

REQ-TM-06 Software FUNC Developer MAN

Name Pub/Sub Mechanism for Metrics

12 Grafana. https://grafana.com/

https://grafana.com/

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 67 of 87 bigdatastack.eu

Description This component queries the metrics repository periodically and publishes
this information through a publisher/subscriber mechanism. Each client
sends subscription requests to the system.

Additional
Information

The monitoring metrics getter is implemented on RabbitMQ13

Table 33 - Monitoring metrics getter (software requirement).

 Id Level of detail Type Actor Priority

REQ-TM-07 Software FUNC Developer DES

Name Spark compatible

Description The triple monitoring engine monitors the performance of Apache Spark14,
which is used in the BigDataStack project as an analytics engine for Big
Data, thus needs to be compatible with this technology.

Additional
Information

Monitoring Spark is done using Spark measure project, which can be
embedded in spark application allowing the collection of some metrics after
each SQL execution. Those metrics are sent to push gateway to be exported
to Prometheus.

Table 34 - Spark compatibility (software requirement).

 Id Level of detail Type Actor Priority

REQ-TM-08 Software FUNC Developer DES

Name LeanXcale compatibility

Description LeanXcale database15 already uses Prometheus for its monitoring
subsystem. However, the integration is relied on static deployments. Thus,
it should be extended to consider re-deployments in cases when an
elasticity action takes places which leads to a scale in/out of the resources.
In these scenarios, LeanXcale should reconfigure its integration with the
existing Prometheus deployment on the run-time and provide monitoring
information for the new nodes

Additional
Information

N/A

Table 35 - LeanXcale compatibility (software requirement).

 Id Level of detail Type Actor Priority

REQ-TM-09 Software FUNC Developer DES

Name OKD compatibility

13 RabbitMQ. https://www.rabbitmq.com/
14 Apache Spark. https://spark.apache.org/
15 LeanXcale. https://www.leanxcale.com/

https://www.rabbitmq.com/
https://spark.apache.org/
https://www.leanxcale.com/

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 68 of 87 bigdatastack.eu

Description The Triple Monitoring engine monitors the performance of Openshift
OKD16, which is the baseline technology used in the orchestration of
containers. Therefore, the triple monitoring engine needs to be compatible
with this technology.

Additional
Information

N/A

Table 36 - OKD compatibility (software requirement).

 Id Level of detail Type Actor Priority

REQ-TM-10 Software FUNC Developer DES

Name CEP compatibility

Description The triple monitoring engine monitors the performance of CEP, which is
used in the BigDataStack project as a streaming engine for processing data
in real-time. Therefore, the triple monitoring engine needs to be compatible
with this technology.

Additional
Information

The CEP exposes several monitoring metrics that are exported to
Prometheus.

Table 37 - CEP compatibility (software requirement).

 Id Level of detail Type Actor Priority

REQ-TM-11 Software FUNC Developer DES

Name Minio compatibility

Description The triple monitoring engine monitors the performance of Minio17, which is
used for object storage in the system. Therefore, the triple monitoring
engine needs to be compatible with this technology.

Additional
Information

N/A

Table 38 - Minio compatibility (software requirement).

 Id Level of detail Type Actor Priority

REQ-TM-12 Software FUNC Developer DES

Name OpenStack Networking Services compatibility

Description The Triple Monitoring engine monitors the performance of the internal
network connecting the different containers inside an application.
BigDataStack uses the OpenStack networking services for managing this
network communications, so the triple monitoring engine needs to be
compatible with this technology.

16 Openshift OKD (Origin Kubernetes Distribution). https://www.okd.io/
17 Minio Private Cloud Storage- https://www.minio.io/

https://www.okd.io/

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 69 of 87 bigdatastack.eu

Additional
Information

N/A

Table 39 - OpenStack Networking Services compatibility (software requirement).

 Id Level of detail Type Actor Priority

REQ-TM-13 Software FUNC Developer MAN

Name Persistently store the monitoring metrics

Description The triple monitoring engine should use a database for persistently storing
monitoring metrics and is connected to Prometheus by http.

Additional
Information

This database is based on influxDB24.

Table 40 - Monitoring database (software requirement).

 Id Level of detail Type Actor Priority

REQ-TM-14 Software FUNC Developer ENH

Name Spark Monitoring Pushgateway

Description This component is used to gather metrics from Spark and ingest them into
the metrics collector.

Additional
Information

The connection between this component and the applications use http.

Table 41 - Monitoring Pushgateway (software requirement).

 Id Level of detail Type Actor Priority

REQ-TM-16 Software FUNC Developer ENH

Name Metrics visualization

Description The metrics must be shown to the end-user via a graphical interface.
Grafana is used for metrics’ visualization.

Additional
Information

Grafana18 is configured for receiving metrics from two sources
(Prometheus, InfluxDB).

Table 42 - Metrics visualization (software requirement).

 Id Level of detail Type Actor Priority

REQ-TM-17 System FUNC Dynamic
Orchestrator

ENH

Name Asynchronous rich notification of SLA violations

Description SLA violations should be notified by means of a publish/subscribe
mechanism, together with the metrics (KPIs) upon which the SLA imposes
restrictions.

18 Grafana - https://grafana.com/

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 70 of 87 bigdatastack.eu

Additional
Information

The main consumer of the SLA violations notifications is the Dynamic
Orchestrator.

Table 43 - Metrics visualization (software requirement).

8.2. Design

Figure 20 describes the high-level architecture of the Triple Monitoring Engine and QoS
Evaluator components, following the requirements defined in Section 8.1. As it is shown, the
metrics collector is in a central place, receiving information from the compatible technologies
(REQ-TM-7 to REQ-TM-12) and feeding both the metrics getter and, subsequently, the
pub/sub mechanism and the database, which is accessed by Grafana. Finally, the QoS
evaluator accesses the metrics collector through the API to read and evaluate the KPIs.

Figure 20 – Triple Monitoring Engine & QoS Evaluation – conceptual view.

Figure 20 shows the interaction between the triple monitoring engine (Prometheus for KPI
monitoring and RabbitMQ for pub/sub). As it is shown, each component starts its own thread.
First, Prometheus focuses solely on periodically retrieving measures for the KPIs and showing
them to the user and administrators of the system. Second, RabbitMQ is used for managing
the messages between components. Subscribers, such as the QoS Evaluator, register in the
system and are notified every time that there has been a change in the data evaluated by
Prometheus. The monitoring metrics getter directly queries Prometheus for obtaining these
data and puts them to RabbitMQ.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 71 of 87 bigdatastack.eu

The QoS Evaluator is designed synchronously react to Prometheus updates. Thus, it performs
a periodical check on Prometheus’ metrics and, for each value, the component compares it
to the agreed QoS. If the minimum agreed QoS (minimum expected performance for the KPIs)
has been violated, the QoS Evaluator simultaneously raises an alert to the system and
communicates this violation to Prometheus, so violations are also monitored as a KPI.

Figure 21 – Interaction between monitoring and QoS Evaluator components.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 72 of 87 bigdatastack.eu

Figure 21 shows the interaction between the Triple Monitoring and QoS, and the rest of the
system. As described before, the Triple Monitoring Engine can provide information on the
performance of the system, compared against the expected QoS. This comparison, carried
out in the QoS Evaluator component, triggers and alert every time that the minimum agreed
QoS is not respected. This alert is intercepted by the ADS Deploy component, which decides
if it is necessary to re-deploy the environment.

Figure 22 – Interaction between Triple Monitoring Engine, QoS Evaluator and ADS Deploy components.

8.2.1. Integration details: LeanXcale
LeanXcale provides monitoring information for its two major components (REQ-TM-8): the
data nodes of its key-value distributed storage and the instances of its Query Engine. It is
important to note that each deployed data node contains both an instance of the storage
along with an instance of the Query Engine, so that the latter can exploit data locality. The
query engine is written in Java and provides monitoring information using the dropwizard

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 73 of 87 bigdatastack.eu

framework19. The advantage of the latter is that it can additionally provide statistical
information on a monitoring metric, like mean time, mean time between a period, the
histogram of the metric etc. Dropwizard can be used with a JMX20 (Java Management
Extensions) plugin which publishes the metrics as managed beans via the JMX. Other metrics
are also published and are available directly via the JMX, while the use of the latter allows to
take advantage of Java’s built-in monitoring information which is available for every java
virtual machine (i.e. number of threads, memory usage, garbage collection statistics, etc).
Additionally, the usage of JMX to publish monitoring information makes the integration with
Prometheus to rely on the JMX-Exporter. Query engine’s monitoring information can be
grouped by specific categories (version, network, logger performance, query executions,
general information etc.).

Apart from the Query Engine, a data node also contains the key value storage nodes
themselves, which are part of the adaptable distributed storage. The latter is written in C and
can provide monitoring of low level information. Data node’s built-in functionality exposes
statistics and monitoring information in the standard output. Due to this, there has been
implemented a routine that periodically takes this output as its input and transforms it to
JSON files, known as metrics. Then, Prometheus can be configured to pull these files from the
predefined location to load this monitoring information. However, this requires a static
configuration and would need to restart Prometheus system, each time the storage is being
scaled in/out and new nodes are added/removed. Due to this, an LXS monitoring proxy will
be provided, that will be configured with Prometheus, and take the responsibility to collect
the monitoring information of all data nodes at run-time, considering possible redeployments
(for more information about the design of the Adaptable Distributed Storage see D4.1).

8.2.2. Integration details: CEP

The CEP provides monitoring information of the queries (REQ-TM-10). The UPM CEP exports
all metrics through a component, the Metric Server. Figure 23 shows the metric server in the
CEP, all CEP components (Instance Managers and Orchestrator) send their metrics using a
push-based socket protocol to the Metric Server (black arrows). The Metric Server opens a
java socket for receiving metrics from the other components and makes available these
metrics to Prometheus through an HTTP server. Prometheus is configured with a new job
targeting the Metric Server to pull the CEP metrics (green arrow).

The CEP leverages Prometheus aggregation functions to send raw metric values minimizing
the overhead of metric processing in the components.

The list of available metrics is the following:

- Orchestrator

o Is Active: binary value. 1 means the Orchestrator is running

o Active Instance Managers: int value. Number of running Instance Managers.

o Registered Queries: int value. Number of registered queries.

o Deployed Queries: int value. Number of deployed queries.

- Instance Manager

o Is Active: binary value. 1 means the Instance Manager is running

19 https://metrics.dropwizard.io/4.0.0/
20 https://en.wikipedia.org/wiki/Java_Management_Extensions

https://metrics.dropwizard.io/4.0.0/
https://en.wikipedia.org/wiki/Java_Management_Extensions

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 74 of 87 bigdatastack.eu

o CPU Load: double value. Percentage of CPU used by the Instance Manager Java

process.

o Events received: long value. Counter of the events received by the IM

o Events sent: long value. Counter of the events sent by the IM.

o Results: long value. Counter of the result events sent to clients.

o Sub-query Instance counter: long value. Counter of the events processed by a

sub-query instance.

o Operator counter: long value. Counter of the events processed by an operator.

o Operator latency: double value. Latency of the operator processing time.

Figure 23 – Prometheus-CEP integration – conceptual view.

8.2.3. Integration details: Spark

Apache Spark is involved in BigDataStack for big data layout and data skipping as described in
the deliverable 4.1 section 6. Thus, IBM and NEC are interested by metrics generated by
Apache for they components for improvement, prototyping and adaptation reasons.
BigDataStack will use SparkMeasure21 project which needs to be imported in a Spark driver
(spark application). For each SQL query executed, a set of metrics will be gathered then send
to the triple monitoring engine via the pushgateway as described in the Figure 9. Spark
Measure establishes connection with different spark executors created for executing SQL
query then collects all metrics produced. Since those values concern a single SQL execution
but they are coming from different executors, Spark Measure aggregates them (sum, max)
before being dispose to the end user. The approach used until now in BigDataStack is to
format those metrics for being compatible with Prometheus naming standard.

21 Spark Measure, https://github.com/LucaCanali/sparkMeasure

IM 1

IM 2

IM n

Metric Server

Orchestrator

Prometheus

https://github.com/LucaCanali/sparkMeasure

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 75 of 87 bigdatastack.eu

Figure 24 – Prometheus-Spark integration – conceptual view.

The list of available metrics generated by this library is the following:

• numStages

• numTasks

• elapsedTime

• stageDuration

• lexecutorRunTime

• executorCpuTime

• executorDeserializeTime

• executorDeserializeCpuTime

• resultSerializationTime

• jvmGCTime

• shuffleFetchWaitTime

• shuffleWriteTime

• resultSize

• numUpdatedBlockStatuses

• diskBytesSpilled

• memoryBytesSpilled

• peakExecutionMemory

• recordsRead

• bytesRead

• recordsWritten

• bytesWritten

• shuffleTotalBytesRead

• shuffleTotalBlocksFetched

• shuffleLocalBlocksFetched,

• huffleRemoteBlocksFetched

• shuffleBytesWritten

• shuffleRecordsWritten.

Spark
Executor

Prometheus
Metrics

Collector
Pushgateway

Triple monitoring engine Spark Application

Spark
Measure S

c
h
e
d

u
le

 ta
s
k

Task’s
metrics

S
Q

L
’s

 m
e
tric

s

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 76 of 87 bigdatastack.eu

8.3. Early Prototype

In an early prototype, a Prometheus deployment has been integrated with the QoS Evaluator.
The communication between both is done directly, bypassing RabbitMQ, through
Prometheus’ API REST. Prometheus has been configured to evaluate the following low-level
criteria:

- Ingestion of metrics from the three levels:

o Resource clusters: Kubernetes / OKD

o Data services: LeanXcale, Minio, Spark, CEP

o Application services

The QoS Evaluator has also been deployed and integrated with the system, along with a
minimum QoS based on the value of the “spark response time” variable. If the value of this
KPI goes over certain Service-Level Objective or SLO (threshold or setpoint), then the QoS is
considered to have been violated and the system registers it. This information is accessible
through Prometheus and Graphana.

Figure 25 – Configuration of the Kubernetes monitoring in Prometheus.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 77 of 87 bigdatastack.eu

Figure 26 – Kubernetes metrics visualization in Grafana.

In CEP early prototype, a module has been implemented to export metrics to Prometheus.
Moreover, Grafana has been integrated in the CEP deployment to create a Dashboard and to
check that metrics are being as expected. Different kind of dashboards can be created to
observe different metrics obtained directly from Prometheus and to create aggregated
metrics from the previous ones.

Figure 27 – CEP components performance visualization with Grafana.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 78 of 87 bigdatastack.eu

Figure 27 shows how these metrics are visualized in Graphana. There are two instance
managers, IM1 and IM2. The two graphs on the top show the CPU consumption evolution of
each instance manager. Both instance managers run two subqueries (SubQueryInstance-1
and SubQueryInstance-3 in IM1 and SubQueryInstance-2 and SubQueryInstance-4 in IM2).
The evolution of the throughput of each subquery is shown in the other graphs.

Next steps for this first early prototype are the deployment of the CEP platform in the testbed
and the integration with the Prometheus and Graphana process that will be running in the
same Big Data Stack testbed.

8.4. Use Case Mapping

The Triple Monitoring and QoS Evaluation components will be monitoring and evaluating
certain key-performance indicators (KPIs) which need to be kept above a certain Service-Level
Objective (SLO) specified by the data scientist of the application engineer.

In the case of the ATOS WORLDLINE-EROSKI use case, and following the experimental
scenarios described at Section 4.1, the first experiments will evaluate and enforce two KPIs:
the response time and throughput of the analytics services comprising a recommender
system. While the Triple Monitoring collects metrics at different levels of the BigDataStack
platform (application, data services and resource cluster) to compute the KPIs, the QoS
Evaluation analyses the evolution of those KPIs to determine whether the SLOs are being met;
If this is not the case, it notifies the QoS violations to the Dynamic Orchestrator.

8.5. Experimental Plan

As discussed, the Triple Monitoring Engine and QoS Evaluator components assess the
performance of a particular CDP Playbook in the system. These components support the ADS-
Ranking in choosing the most optimal CDP Playbook to ensure performance.

During the experimental plan it will be demonstrated that metrics at different levels (system
and application level) can be dynamically monitored and evaluated as part of the same Quality
of Service KPI.

8.5.1. Background and Related Work

The performance of a Cloud service has already been addressed in bibliography. For example,
de Vaulx et al. [4] developed a model for the performance of the Cloud at an application level
(Quality of Service, availability, reliability, etc.). This is consistent with the services offered by
most Cloud providers, which ensure the user a minimum availability time during the lease. On
the other hand, the cloud provider is interested in optimizing the performance and utilization
of the data centre at a system level [5], (manageability, fault tolerance, energy consumption,
etc.).

These two levels of evaluation are opposed (the user pushes for a better QoS, while the
provider requires a more efficient use of resources), and there is not a standard approach to
unifying the concerns of both. A compromise between the parts is usually the approach,
economical (the provider makes a worse use of resources and the price to the user is
increased), moral [6], etc. However, to the best of our knowledge, there is not a centralized
approach to ensure the performance of metrics at both levels (application and system level)
simultaneously.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 79 of 87 bigdatastack.eu

8.5.2. Evaluation Methodology and Metrics

The testbed used for this experimental plan will be the same as described in Section 4, keeping
consistency with the rest of components. Data will be retrieved from real-life scenarios
provided by the Use Case partners, which are also described in Section 4. The metrics
retrieved and evaluated will be related with the UCs, while exposing the capabilities of the
system to evaluate simultaneously characteristics at the two levels.

From the UCs we obtain two main metrics: throughput and response time. The former
evaluates the environment metrics (platform level), while the latter measures the behaviour
of the application towards the user (application level).

The metrics considered at a platform level are:

- Disk usage (%): The percentage of disk which is being used.
- Memory usage (%): The percentage of memory which is being used.
- CPU usage: Distribution of load in the CPU.

The metrics considered at the application level are:

- Availability (% of time): Percentage of time which the application is down.
- CPU: Minimum computational power claimed by the application.

These metrics will be weighted according to the application needs. The weights of each
metric’s value will be determined in future iterations.

During the experimental evaluation a set of experiments will be run, where the data will be
unchanged, and the virtual infrastructure is adapted. These experiments target to evaluate
the response of the triple monitoring engine and QoS evaluator under different situation
(under-provision of resources, near-optimal and over-provision of resources). The experiment
will evaluate the number of QoS violations per unit of time, namely:

- Platform metrics violations: Violations involving the system’s performance.
- Application metrics violation: Violations involving the application’s performance.
- Mixed metrics violation: Violations involving any/all the above metrics.

The experiments will start on a system with solely 1 container, an extreme case of under
provision. In each new experiment, the number of containers will be increased by a certain
amount (to be determined in future iterations by observation of the data and expected
computational requirements). As the number of containers increases, the violations in the
system will go from the application level (under provision of resources) to the platform level
(over provision of resources). During these experiments, it is expected that the near-optimal
configuration will be reached. The set of experiments will stop once it is proven that adding
new containers does not increase the performance of the system.

8.6. Next Steps

The next steps regarding the Triple Monitoring and QoS Evaluator components are many-fold:

- Integrating the communication with RabbitMQ: While RabbitMQ has already been
deployed, it has yet to be used to deliver messages between the QoS Evaluator and

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 80 of 87 bigdatastack.eu

the Triple Monitoring Engine. In the next phase, it will be forced the communication
in a pub/sub manner, using RabbitMQ.

- Complete integration with the rest of technologies

- Integrating Prometheus with a prototype application: Once an application is deployed,
Prometheus will be integrated with it to measure real-life KPIs.

- Choose application metrics

- Running experimentation

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 81 of 87 bigdatastack.eu

9. Information-Driven Networking

The Information-Driven Networking mechanisms provide a set of functionalities for traffic
engineering and network management by taking into consideration inter- and intra-
knowledge and requirements of data intensive operations and applications. These
requirements concern services prioritization, time criticality constraints and security aspects
and are controlled by means of labels and selectors to enforce specific network policies. This
is achieved by defining through rules the connections that are allowed or not allowed to
specific services or specific nodes in the BigDataStack cluster.

The outcome of the Information-Driven Networking mechanisms will be to translate these
requirements into networking primitives that achieve the desired dissemination, regulatory
compliance and sharing of the information in the BigDataStack environment.

9.1. Requirements specification

To facilitate the understanding of the design as well as the challenges addressed by this
component, the requirements related to this component have been brought from D2.2 and
literally included into this section. Please note the following requirement tables are compiled
together with the rest of requirements of BigDataStack in D2.2, and that they are included in
here for the reader’s convenience.

 Id Level of detail Type Actor Priority

REQ-IN-01 Software FUNC ROL-02 MAN

Name Information-Driven Networking based on type of data

Description The Information-Driven Networking mechanisms enforce a set of policies by
specifying the rules of how two or more components can communicate
(send/receive data) with each other according to the available resources.

Additional
Information

A different policy is enforced based on different incoming data
requirements, following the type of processing requirements (stream,
micro-batch, batch) and the type of data (structured, semi-structured,
unstructured).

Table 44 - Network Policies based on type of data (software requirement).

 Id Level of detail Type Actor Priority

REQ-IN-02 Software FUNC ROL-02 MAN

Name Information-Driven Networking based on application requirements

Description The Information-Driven Networking mechanisms enforce a set of policies by
specifying the rules of how to handle applications with different
requirements according to the available resources. For instance, an
application with analytics requiring real-time data processing may impose
time-critical constraints on the handling, operation and transformation of
data.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 82 of 87 bigdatastack.eu

To support online analytics and decision making in time-critical conditions
specific network policies need to be applied to deliver the results within
predefined time constraints.

Additional
Information

The Data Scientist can set an “allow/deny access” policy regarding the set
of applications and their requirements (real-time, close to real-time needs)
accessing the backend services of the BigDataStack environment to
prioritize/isolate the set of ingress/egress workloads that are enabled/dis-
based on their IP & Port in order to achieve efficient services interaction.

Table 45 - Network policies based on application (software requirement).

9.2. Design

Through the Information-Driven Networking tool the Data Scientist declares her intend to be
realized by the underlying system to translate either the data or the application requirements
into specific networking primitives that achieve the desired Service-Level Objective (SLO). This
objective may refer to various kinds of traffic – streams, batches and micro batches – get the
isolation/priority of availability and bandwidth that are needed to serve the network users
effectively. With the convergence of all data and services in the same network, the
Information-Driven Networking will manage traffic according to the network utilisation, the
applications requirements and the communication latency without compromising the
functionality of the network. Using policy statements, either the Network Administrators or
the Data Scientists can specify which kinds of service need to be given priority, at what times
and on what part of their IP based protocol.

As all the mandatory building blocks of BigDataStack are containerized, a pod representing
the basic building block in Kubernetes, encapsulates an application container (or multiple
containers). Therefore, a set of labels and selectors need to be defined to assign key/value
pairs to pods and set up the expressions that combine these labels to identify the traffic
from/to individual containers, virtual machines and hosts that it needs to be handled before
it is routed/delivered to its destination. Then, the network policy definition includes a pod
selector and the rules that apply to all the pods that meet the selector criteria. These rules
are applicable to egress and ingress resources establishing connections to the pods, refer to
labels with specific IPs or IP ranges and can permit or restrict communication to specific ports
or allow/deny access to/from specific namespaces. For instance, there may be various
namespaces serving different needs such as client and UIs services/applications. To configure
network policies enforcement specific services (frontend, backend) need to be exposed to
specific namespaces (client, UIs). In the following, we present an example of controlling
ingress traffic by giving an indicative network policy definition.

kubectl create -f - <<EOF

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: access-nginx

 namespace: sample-policy-demo

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 83 of 87 bigdatastack.eu

spec:

 podSelector:

 matchLabels:

 run: nginx

 ingress:

 - from:

 - podSelector:

 matchLabels: {}

EOF

Table 46 – An indicative network policy definition for ingress traffic.

To address the challenges of a specific application, its requirements and the respective
policies enforcement, a set of mechanisms operating at the services layer are expected to set
up the appropriate attributes to understand the virtual hosts, URLs and other HTTP headers.
This functionality implements the policy enforcement endpoint inside the pod as sidecar
container in the same network namespace. This approach is highly flexible and HTTP aware
and facilitates to apply policies in support of operational goals, such as service routing,
retries, circuit-breaking, etc.

Containers networking is realised by Networking as a Service (through Neutron in OpenStack)
and easily deployed containers (through Magnum either as Virtual Machines or Physics
Machines). The idea is to bridge networking functionalities supported by Neutron for
Containers Use Cases using abstraction mechanisms (exploiting functionalities of Kuryr22,
presented in section 5). The outcome is to deliver Neutron networking and services to Docker
containerised services.

The Information-Driven Networking mechanisms also operate at the network layer. The latter
gives the advantage of being universal. Our focus is to address the challenges arising from the
diverse data types (i.e., stream, micro-batch, batch) to enforce policies to DNS, storage
services (i.e., scalable storage of LeanXscale, Object Store, etc.), real-time streaming, and a
plethora of other services that do not use HTTP. This functionality implements the policy at
the host node outside the network namespace of the guest pods. The workloads in the
BigDataStack environment can communicate without IP encapsulation or network address
translation for bare metal performance, which enables easier troubleshooting, and better
interoperability. In settings that require an overlay, the Information-Driven Networking
mechanisms will work with tunnelling. This approach is universal, highly efficient, and isolated
from the pods and facilitates to apply policies in support of security and data privacy goals.
In the following, we present an example of controlling communications to HTTP GET requests
by giving an indicative network policy definition which consists of three policy objects.

Restricting customer’s communications to HTTP GET requests.

kind: SampleNetworkPolicy

22 Kuryr. https://wiki.openstack.org/wiki/Kuryr

https://wiki.openstack.org/wiki/Kuryr

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 84 of 87 bigdatastack.eu

metadata:

 name: customer_app

spec:

 selector: app == 'customer_app'

 ingress:

 - action: Allow

 http:

 methods: ["GET"]

 egress:

 - action: Allow

The customer_app is the consumer of this service. Restricting incoming connections to
customer_app.

kind: SampleNetworkPolicy

metadata:

 name: summary

spec:

 selector: app == 'summary'

 ingress:

 - action: Allow

 source:

 serviceAccounts:

 names: ["customer_app"]

 egress:

 - action: Allow

--

Restricting access to LXS. Only the summary microservice has direct access to LXS data
base.

kind: SampleNetworkPolicy

metadata:

 name: LXS_db

spec:

 selector: app == 'LXS_db'

 ingress:

 - action: Allow

 source:

 serviceAccounts:

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 85 of 87 bigdatastack.eu

 names: ["summary"]

 egress:

 - action: Allow

Table 47 – An indicative network policy definition for controlling HTTP GET requests.

In the following figure, we present the high-level functionalities of the Information-Driven
Networking tool in a UML Components diagram.

Figure 28 – Information-Driven Networking UML.

9.3. Early Prototype

The Information-Driven Networking is not currently delivering an early prototype as it starts
at M13. However, a thorough review of Software Defined Networking (SDN) mechanisms in
cloud environments has been made to start the development before M13 and make available
an early version of the Information-Driven Networking in M18.

9.4. Use Case Mapping

The Data Scientist uses the Information-Driven Networking tool, to define metadata and
means of communication to apply tailored controls to data intensive operations and
applications related with analytic tasks according to specific requirements, by also including:

• The identification of the end-to-end application objectives in terms of specifying KPIs
and criteria for optimal networking management and engineering;

• The definition of the constraints arising from the type of data to be processed (data
transfer, liveness, readiness among services) and the requirements of the application
(time criticality, security, privacy);

• The validation of the applied network controls by evaluating that the policies have
been correctly enforced and that resources are distributed among consumers as
requested.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 86 of 87 bigdatastack.eu

Figure 29 – Mapping of Information-Driven Networking tool with BDS Use Cases.

9.5. Experimental Plan

The Experimental Plan regarding the Information-Driven Networking includes to firstly set up

the services and resources interacting within the BDS cluster and then conduct a set of

scenarios including simple and more complex policies at network and application level. The

simple policies include a set of isolation rules allowing/restricting access to specific pods and

then we will proceed with more complex policies which may include the management of

frontend and backend services.

This plan includes diverse configuration in yaml files with different policyTypes (i.e. Ingress,

Egress) and PodSelector (matchLabels in/out app) to validate when specific policy type is

enforced (i.e., allowed/restricted).

9.6. Next Steps

In the proceeding time period, we will work on with the early development of the

Information-Driven Networking mechanisms and their experimentation with variable

scenarios by enforcing different policies in diverse application requirements and for multiple

constraints imposed by the data types. The use cases and the involvement of the Data

Scientists will facilitate to address the main functionalities and deployment considerations of

this tool coupled with the expressed requirements.

 Project No 779747 (BigDataStack)

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1

 Date: 5.12.2018

 Dissemination Level: PU

 page 87 of 87 bigdatastack.eu

10. References

[1] Network Policies in Kubernetes. Available Online:
https://kubernetes.io/docs/concepts/services-networking/network-policies/

[2] Project Calico. Available Online: https://www.projectcalico.org/

[3] Istio. Available Online: https://istio.io/

[4] de Vaulx, Frederic J., Eric D. Simmon, and Robert B. Bohn (2018). “Cloud computing
service metrics description.” Special Publication (NIST SP)-500-307. 2018.

[5] William Voorsluys, James Broberg, Srikumar Venugopal, Rajkumar Buyya, Martin Gilje
Jaatun, Gansen Zhao, Chunming Rong (2009). “Cost of Virtual Machine Live Migration in
Clouds: A Performance Evaluation”, Cloud Computing, Springer Berlin Heidelberg, 2009, P
254-265

[6] D. Guyon, A. Orgerie, C. Morin and D. Agarwal (2017). “How Much Energy Can Green
HPC Cloud Users Save?” in 25th Euromicro International Conference on Parallel, Distributed
and Network-based Processing (PDP), St. Petersburg, 2017, pp. 416-420.

[7] Gulisano, V., Jimenez-Peris, R., Patino-Martinez, M., Soriente, C., & Valduriez, P. (2012).
“Streamcloud: An elastic and scalable data streaming system.” IEEE Transactions on Parallel
and Distributed Systems, pp. 2351-2365.

[8] H. Rui et al. (2014). “Enabling cost-aware and adaptive elasticity of multi-tier cloud
applications.” Future Generation Computer Systems, pp. 82-98.

[9] Kalervo and Jaana. (2002). “Cumulated gain-based evaluation of IR techniques.” ACM
Transactions on Information Systems (TOIS), pp. 422--446.

[10] L. Tie-Yan. (2009). “Learning to rank for information retrieval.” Foundations and Trends
in Information Retrieval, pp. 225-331.

[11] M. Ferdman et al. (2012). “Clearing the clouds: a study of emerging scale-out workloads
on modern hardware.” ACM SIGPLAN Notices, pp. 37-48. ACM.

[12] Raschke, R. (2010). “Process-based view of agility: The value contribution of IT and the
effects on process outcomes.” International Journal of Accounting Information Systems,
11(4), pp. 297-313.

[13] Salton and McGill. (1986). “Introduction to modern information retrieval.” McGraw-Hill,
Inc.

[14] Sergey and Christian. (2015). “Batch normalization: Accelerating deep network training
by reducing internal covariate shift.” arXiv preprint.

[15] Z. Jia et al. (2013). “Characterizing data analysis workloads in data centers.” IEEE
International Symposium on Workload Characterization (IISWC), pp. 66-76. IEEE.

