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1. Executive Summary 

This is the Scientific Report and Prototype Description (Y1) for the work done in WP3 on the 
Data-Driven Infrastructure Management capability of BigDataStack. The document shows the 
plan to deliver the solution through a series of implementation and experimentation 
increments. It describes the high-level architecture of the solution, as well as the detailed 
specification of requirements, design, first prototype and experimentation plan per solution 
component.  
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2. Introduction 

This deliverable presents Scientific Report and Prototype Description (Y1) for the work of 
WP3, which is related to the so-called Data-Driven Infrastructure Management capability of 
the BigDataStack platform. The document shows how the implementation of the solution is 
planned to be delivered following an incremental and iterative methodology, having cycles of 
implementation and experimentation. On one hand, the document describes the high-level 
assumptions and architecture of the capability, as well as detailed requirements, design and 
prototypes per component. On the other hand, it describes the experimental use case 
scenarios and plans, as well as the experimental plan per component and its mapping with 
the use case scenarios. 

2.1. Relation to other deliverables 

This document is related to the following past and immediately upcoming deliverables in the 
project. 

• D2.4 – Conceptual model and Reference architecture (M6). The description of the 
high-level architecture of BigDataStack as well as the interplay and integration 
between the main components. The architecture of the Data-Driven Infrastructure 
Management as well as the design of the components have been devised to fit into 
such a global architecture. 

• D2.2 – Requirements & State of the Art Analysis II (M11). The specification of 
BigDataStack requirements is centralized in this deliverable. This specification is a 
refinement of the first version delivered in D2.1 (M6). The architecture of the Data-
Driven Infrastructure Management (DDIM) as well as the design of the components 
have been devised to satisfy those requirements. Please note that for the reader’s 
convenience, the requirements related to each one of the DDIM components have 
also been included (literally brought from D2.2) in the present deliverable, 
specifically, at subsections 5.1, 6.1, 7.1, 8.1 and 9.1. 

• D4.1 – WP4 Scientific Report and Prototype Description - Y1 (M11). The D3.1 makes 
references to some of the requirements and components which are designed, 
implemented and experimented with at WP4, while also the D4.1 references and 
raises requirements that are being described in the current document. In fact, the 
Data-Driven Infrastructure Management is meant to provide infrastructure services 
(Infrastructure-as-a-Service) to those components. 

• D5.1 – WP5 Scientific Report and Prototype Description - Y1 (M11). The D3.1 makes 
references to some of the requirements and components which are designed, 
implemented and experimented with at WP5; this is because the tools developed at 
WP5 will interact with the services and resources provided by the infrastructure to 
implement certain functionality supporting the different BigDataStack stakeholders 
(see Section 3.3). 

2.2. Document structure 

The document is structured as follows: Section 3 describes de solution architecture of the 
data-driven infrastructure management capability of BigDataStack, including the 
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assumptions made (Section 3.2), the architecture vision (Section 3.1), the related platform 
roles (Section 3.3) and the high-level design (see Section 3.4). 

Section 0 presents the implementation and experimentation plan. Starting with the 
experimental setting (i.e. scenarios, Section 4.1) and plan (i.e. research questions and 
methodology, Section 4.2), it finalizes with the implementation and experimentation 
roadmaps (Section 4.3). 

The final five sections are dedicated to the requirements specification, design description, 
use case mapping, prototype description and next steps elaboration for each of the five 
high-level components of the architecture: Cluster Management (Section 5), Dynamic 
Orchestration (Section 6), ADS Ranking & Deploy (Section 7), Triple Monitoring & QoS 
Evaluation (Section 8) and Information-Driven Networking (9). 
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3. Solution Architecture 

This section describes the technical solution for the Data-driven Infrastructure Management. 
It firstly describes the vision of this BigDataStack platform capability (context, goal, main 
functions or services). Secondly, it enumerates the assumptions the work package makes 
about the environment that BigDataStack will be deployed within. Thirdly, it shows the 
platform roles engaged in the use of the capability as well as an example scenario. Finally, it 
describes the global design of the solution. 

3.1. Vision 

The envisioned BigDataStack platform represents a full stack which aims to facilitate the 
needs of data operations and applications (all of which tend to be data-intensive) in an 
optimal way. In such a stack, a layer of self-managed and self-optimizing data-driven 
infrastructure will be the basis for upper-level layers providing higher capabilities (see Figure 
1) to BigDataStack platform roles (see Section 3.3). 

 

Figure 1 – BigDataStack core platform capabilities (extracted from D2.1) 

These six BigDataStack core platform capabilities are envisioned to achieve the business goals 
or expectations from the different stakeholders. In the case of the Data-driven Infrastructure 
Management capability, the goal is to provide means for efficient and optimized 
infrastructure operations, incorporating all aspects of data-driven management for the 
compute, storage and network resources. 

This capability is mainly engaged in the Operation Phase of BigDataStack (see D2.4). It is 
realised through different components of the BigDataStack infrastructure management 
system and aims at the management of the complete virtual and physical infrastructure 
resources, in an optimised way for data-intensive applications.  
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Figure 2 – The BigDataStack seven-step process (extracted from D2.4) 

Figure 2 shows the seven-step process comprising the BigDataStack Operation Phase, which 
needs to be fully supported by the Data-driven Infrastructure Management capability 
(extracted from D2.4): 

1. Based on benchmarking and previous deployments, compute (e.g. VMs, instances, 

containers) and storage (e.g. block, volumes) resources are allocated. 

2. According to the allocated resources, distributed stores (e.g. databases, object stores) 

are deployed and the data uploaded.  

3. Data-driven networking services are also deployed to facilitate the diverse networking 

needs between different computing and storage resources. 

4. Application components and data services are deployed and orchestrated based on 

application and data-aware deployment patterns. A ranking and deployment function 

will perform optimal deployments according to those deployment patterns and the 

reserved computing, storage and networking resources. 

5. Data analytics tasks will be distributed across the different nodes of data processing 

clusters, while orchestration of application components and data services is also 

performed. 

6. Monitoring data is collected and evaluated for the resources (compute, storage and 

network), application components and data services and operations. 

7. Runtime adaptations take place for all elements of the environment including 

resource re-allocation, storage and analytics re-distribution, re-compilation of 

network functions and re-deployment or applications and data services.  

3.2. Assumptions 

Before discussing the requirements for Data-driven Infrastructure Management, it is 
important to specify any foundational assumptions that the work package makes about the 
environment that BigDataStack will be deployed within. Indeed, we have so far simply 
referred to compute, storage and network resources that form the ‘Infrastructure’ in Data-
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driven Infrastructure Management. However, we need to also consider what we are 
deploying and when and where we are deploying it. 

3.2.1.  Containerized Applications 

The overall aim of WP3 is to enable the efficient and effective deployment and management 
of arbitrary user applications on high-performance compute clusters. However, deploying a 
user application is a complex process, as an application may have hardware dependencies 
(e.g. it needs a GPU accelerated machine) or software dependencies (e.g. a particular 
operating system, libraries, or processing engine like Apache Spark). Indeed, it would be an 
impossible task to build a system that could accept any application without restrictions. As 
such, simplifying assumptions need to be made to create a general deployment solution. 

Over the last few years, one solution to this problem has become popular, namely application 
containers. The core idea underpinning this technique is that the user will create containers 
for their application’s services, which contains the compiled code and any dependencies, all 
in a single bundle. A container is therefore effectively self-contained, and hence can be more 
easily deployed. Container orchestration platforms such as Kubernetes or OpenShift then 
provide a standard platform for deploying containers on bare metal hardware1. In this case, 
the orchestration platform is responsible for assigning resources (e.g. CPU cores and RAM) to 
individual containers, where the resources of a single physical machine are shared across 
multiple containers. Complex user applications are often comprised of multiple containers 
that depend on one another, or rely on shared resources such as a central database 
repository. Orchestration platforms often provide the means to define groups of containers 
(e.g. Kubernetes Pods) that are deployed together to support these more complex types of 
application. 

A foundational assumption of BigDataStack is that user applications/services will be either 
provided in containers, or the user will be making use of pre-built services from the 
BigDataStack library that are already containerized. The role of Data-driven Infrastructure 
Management is then to deploy and manage these containers such that user-defined Service-
Level Objectives (SLOs) are met.  

3.2.2.  Hardware Environment 

In general, we can consider three scenarios where a user requisitions big data infrastructure, 
each one comes with its own advantages and limitations. The first and simplest case is where 
the user already owns and administers their own cluster that they want to manage solely with 
BigDataStack. We refer to this as the ‘dedicated cluster’ scenario. Under this scenario, 
BigDataStack would be deployed on and would manage the entire cluster. 

The second case is where the user wants to requisition a portion of a shared cluster, where 
the unit of requisition is a single machine (physical or virtual). This might represent a case 
where users do not own their own big data infrastructure and are looking to other companies 
to provide that for them. Or they are part of a large company with a single cluster that is 
shared amongst multiple teams. We refer to this as the ‘opaque cluster’ scenario. In this 
scenario, BigDataStack would be first deployed on top of a small portion of the external 

                                                 
1 Sometimes there may be an additional virtualization layer, where the container 
orchestration platform itself is deployed on a virtual machine. This may occur when hardware 
is shared with other orchestration platforms or other non-containerized applications. 
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opaque cluster. New machines may then be requisitioned from the opaque cluster on-
demand, possibly for an additional fee. An example of this scenario is a case were a user wants 
to make use of BigDataStack’s proposed Data-driven Infrastructure Management capabilities 
over a public cloud like Amazon Web Services or Microsoft Azure. 

The third case is where the user wishes to use an external provider’s orchestration platform 
for deploying their containers (e.g. Amazon EKS). This might occur in scenarios where a user 
wants to leverage optimisations or additional services provided by an external provider’s 
orchestration platform (e.g. native cross-availability zone support in Amazon Elastic 
Kubernetes Service or EKS) but would still like to make use of BigDataStack’s data services 
and/or dimensioning and modelling capabilities. We refer to this as the ‘opaque orchestrated 
cluster’ scenario. 

 

Figure 3 – Cluster Management Scenarios 

We can see these three scenarios in Figure 3. The key difference between these scenarios is 
who controls the way that the virtualized containers are allocated to physical hardware. In 
the dedicated cluster scenario, that process would be controlled directly by BigDataStack (as 
part of step 1 of the operations phase). In the opaque cluster scenario, BigDataStack still 
controls the allocation of virtualized containers to physical hardware, but that hardware may 
be being shared with other processes (e.g. we ask for 4 CPU cores and the external cluster 
manager allocates us half an 8 CPU core physical machine). Finally, in an opaque orchestrated 
cluster, allocation to physical hardware is controlled by an external orchestration manager 
(BigDataStack has no control of the physical hardware). 

It is important to note this distinction, as which scenarios BigDataStack targets will impact on 
component design. If BigDataStack targets the opaque cluster and/or the opaque 
orchestrated cluster scenarios, it will be usable by a wider audience, as users do not need to 
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own or rent a dedicated cloud. On the other hand, reliance on external management software 
may result in containers and/or services from different user applications sharing a physical 
hardware, making it more difficult to estimate with confidence if Service-Level Objectives 
(SLOs) will be met in advance (as hardware sharing would be unpredictable and invisible to 
BigDataStack).  Meanwhile, targeting only a dedicated cloud means that BigDataStack would 
have the power to avoid hardware sharing, or at least account for it, when checking SLOs (as 
all deployed services would be visible to BigDataStack). However, this markedly reduces the 
potential user-base for BigDataStack, and even if hardware sharing can be identified as a root 
cause for an SLO failure (which may not be possible), it is unclear what actions BigDataStack 
could take other than move the failing service to another machine. 

For these reasons, subsequent design for Data-driven Infrastructure Management assumes 
that BigDataStack will support both dedicated and opaque cluster scenarios. Note that as a 
result, some BigDataStack functionalities may be unavailable in opaque cluster deployments 
(in cases where those functionalities require dedicated control of underlying hardware to be 
effective). 

3.2.3. Application Lifecycle Support 

It is important to note we envision a The Data-Driven Infrastructure Management capability 
(DDIM) which plays a role in two clearly differentiated stages of the software application 
lifecycle: (first) deployment and operations. 

- Deployment: In the first deployment, DDIM carries out an optimal deployment 
configuration for the application to satisfy its Quality of Service (QoS) constraints. The 
decision-making process is based on the previous experience with the deployment of 
that application (from both benchmarking and production executions) as well as 
similar applications.  

- Operations: At runtime, the DDIM continuously monitors the application as well as the 
underlying infrastructure to evaluate its QoS. In case it is not satisfied, the DDIM 
triggers a dynamic adaptation process to reconfigure the application deployment. This 
decision-making process is based not only on previous experience in application 
deployments but more importantly the experience gathered during the current 
execution. 

3.3. Platform Roles 

The following table lists the BigDataStack roles that will be interacting with the Data-driven 
Infrastructure Management (see the complete list of roles in Deliverable D2.2). 

Id Name Description 

ROL-01 Data Owner They would need to move both in-motion (streaming) and at-
rest data into BigDataStack data stores layer, which support 
both SQL and NoSQL data stores. 

ROL-02 Data Scientist They would need to deploy and operate their analytics tasks by 
utilizing a declarative paradigm, which includes preferences 
regarding the data services (such as data sores or processing) 
to be used, and the Quality of Service (QoS) constraints to be 
applied on the analytics tasks.  
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ROL-04 Application 
Engineers 

They would need to experiment with different deployments 
for their data applications, which include analytics tasks along 
with other application services. They would need to 
benchmark the data application to come up with the optimal 
deployment configuration to satisfy QoS constraints. 

ROL-05 Data Engineers They would need to deploy and operate data services (such as 
data storage, data processing or data visualization) on the 
BigDataStack platform, in a way that let them satisfy the QoS 
constraints requested by the consuming analytics tasks. 

Table 1 – BigDataStack Platform roles 

3.4. Example Scenario 

In this section, we provide a detailed example scenario of a data-driven application 
deployment and operation to illustrate how Data-driven Infrastructure Management is 
envisaged to function and how the application engineers and data scientists benefits from its 
functionalities.  

An example data-driven application 

For this example, let us assume that we have a stock pricing application for a large European 
grocery retailer. The application’s role is to set the prices for all goods in the consortium’s 
online stores, including adding one-day flash sales to promote regular engagement from 
customers. There is an important constraint for data scientist devising the big data analytics 
algorithms and the application engineers deploying and executing those as compute tasks: it 
needs to run each night after 9pm and needs to be finished by 4am, such that the online 
storefronts have time to update their pricing before morning traffic. 

The application itself is comprised of three main services: the price modelling service, the 
price application service and the store-front update service. The price modelling service needs 
to run first as a large batch operation, ingesting all sales from the previous twelve months and 
updating the internal model about product stock and popularity. This means the model 
update process will required access to historical big data. Once that service is finished, the 
price application service runs over all current stock, updating the item prices and adding sales 
where appropriate. As items are processed, these are sent directly to the store-front update 
service, which remotely updates the various consortium’s store-front databases. In this 
example, these two last services are parallelizable. 

Operational environment (scenario assumptions) 

To make the example more concrete we consider the following assumptions: 

a) The BigDataStack infrastructure is deployed on an opaque cloud provided by a public 

vendor, where compute resources can be requested on demand.  

b) The cloud environment is relatively stable in term of performance and, for the sake of 

simplicity, we have a unique size of allocable server. 
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c) The time needed to complete the compute task is a distribution that has been learnt 

(e.g., a normal distribution) where the average is some (linear) function of the input 

data size (which may change every day) and a (decreasing) function of the number of 

servers allocated. 

d) The distributed storage possesses an adaptation mechanism which is independent 

from those of the Data-Driven Infrastructure Management, which means it can be 

scaled in/out independently, considering decisions based on its internal metrics and 

handle on its own the reconfiguration of the internal data regions (see Section 5.1, 

REQ-CM-04).  

e) The benchmarking phase (see D5.1), give hints (estimates) on the expected 

computation time depending on different variables, including the opaque cloud 

configuration, the application deployment configuration and even the day of the 

week/month, but with some non-negligible uncertainty. 

f) The historical big data is stored in a secure datastore managed by BigDataStack, 

including the specification of what data needs to be processed by what service (e.g., 

the price modelling service need the last twelve months’ sales information). 

g) The Data-driven Infrastructure Management (DDIM) decision-making includes a policy 

to minimize the overall cost of the underlying public (opaque) cloud; this would let the 

system to allocate no more resources than necessary to deploy and operate 

applications. Therefore, application engineers do not need to explicitly ask for a 

minimization of cost (or specify cost as a Service-Level Objective (SLO) as this objective 

will be embedded in the DDIM decision-making process. 

h) The Service-Level Objectives (SLOs) violations do not penalize economically the Data-

driven Infrastructure Management function in favour of those setting SLOs, that is, the 

application engineers and data scientists. This means there is no trade-off to make 

between public cloud cost versus penalties. Therefore, we avoid the scenario where 

the DDIM decision-making compromise between the cost (in terms of public cloud) of 

a re-deployment and the cost of keeping on violating an SLO. This is indeed a 

simplification of real-world scenarios, but it is necessary to keep this example scenario 

concise enough as to make it an effective example. 

Before deployment (and prior to Data-Driven Infrastructure Management) 

The application engineer uploads the application to the BigDataStack platform and specifies 
the main workflow of their application via the Process Modelling Toolkit. This implies that 
there are two phases: Phase 1) the price modelling service runs, and Phase 2) the price 
application service and store-front update service run concurrently.  

As part of the service, it is agreed a Service Level Objective (SLO) of end-to-end completion 
time < 7 hours−to be accomplished between 9pm and 4am, as they plan to schedule the 
process to start at 9pm every day. Finally, preferences they may have regarding the 
configuration of the application deployment are also specified, for example, the container 
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images location and basic resources allotted to them (e.g., virtual CPUs and memory). All this 
information is compiled in a so-called Playbook. 

The Playbook is passed to the Application Dimensioning Workbench, where it is converted 
into multiple CDP (Candidate Deployment Pattern) Playbooks, each one describing a potential 
deployment configuration (what compute and memory resources to request). Each of these 
configurations will undergo a brief benchmarking step, where the resource usage of the 
application is estimated (this involves using a small sample of data to test the system). For the 
purposes of this example, we assume that a per-service virtual CPU usage, memory usage, 
data input/output bandwidth and time-to-complete is estimated. It is the resultant set of CDP 
Playbooks with benchmarking information that is passed to Data-driven Infrastructure 
Management to optimize its decision-making models. 

Application deployment (initial) 

The first function of the Data-driven Infrastructure Management is resource estimation.  As 
discussed later in Section 7, the ADS Ranking component takes the set of CDP Playbooks 
resulting from the benchmarking activities and selects the most suitable one by comparing 
the benchmarking estimates with the user SLOs and application deployment preferences. In 
our example, for each CDP Playbook, this process involves analysing each of the two 
application phases to determine what resources they need to run efficiently. This means using 
the benchmarking data in conjunction with historical information from past similar 
deployments to model factors such as expected virtual CPU and memory usage per-service 
(under average and peak conditions), affinity for scale-out vs. scale up, and monetary cost 
(machine cost of the cloud provider in this example). This way, each CDP Playbook is assigned 
a score, indicating how well it is predicted to perform. ADS Ranking then filters out any CDP 
Playbooks that are predicted to fail the user’s SLOs (i.e. the aggregate time for both phases 
exceeds the completion time limit set by the user) and selects the highest scoring CDP 
Playbook of those remaining.  

The next step is for the Deployment service (see Section 7) to take the selected CDP Playbook 
and requests the resources specified within. This petition is fulfilled (the deployment 
operations enacted) by the underlying Cluster Management service (see Section 5), which in 
this case will map the requested resources into a series of machine allocation demands that 
are sent to the public cloud provider for the application services. After this, data-driven 
networking is configured, enabling the secure information transfer between the machine 
holding the object store and the machines needing to perform the compute, as well as 
hooking in monitoring functionality to facilitate data transfer optimisation. 

Application operations (re-deployment) 

Once the application has been successfully deployed, the Dynamic Orchestrator (see Section 
6) enters scene as responsible for managing run-time adaptation of the application 
deployment and networking configurations. The first action that the Dynamic Orchestrator 
performs is to request the Triple Monitoring and QoS Evaluation (see Section 8) of the new 
deployment. As a result, metrics regarding the completion time of the application services 
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start to be collected as well as evaluated against the SLO originally set by the application 
engineer: end-to-end completion time < 7 hours.  

After a certain period, the Dynamic Orchestrator observes that the estimated completion 
time (measured by the rate at which ‘data row processed’ events are received) for Phase 1 
has changed from 4 hours to 6 hours. As a result, end-to-end completion time is now 
estimated at 8 hours (an estimated completion time of 5am), constituting an SLO failure state.  

Thus, the Dynamic Orchestrator will try to fix this automatically via run-time adaptation within 
the platform. The exact operation that the Dynamic Orchestrator will employ depends on the 
log data from the running application and to what extent the application supports run-time 
changes. For this example, we will assume that the log data indicates that the compute nodes 
are maximising CPU usage, and hence we might fix the issue by increasing the amount of 
compute resources available. Furthermore, we assume that the application is run-time 
scalable, i.e. it supports changing at run-time the degree of parallelism (e.g., an Apache Flink 
or Apache Storm application).  As such the Dynamic Orchestrator will send a request to the 
ADS Ranking component requesting service re-deployment, where both the target 
completion time and CPU capacity are updated to reflect the state of the running service.  

The ADS Ranking will then re-score all of the CDP Playbooks that it has available for the user’s 
application in light of these new requirements. The difference with the previous deployment 
is that by including a target CPU capacity, CDP Playbooks with increased CPU resources will 
be favoured. Moreover, by re-estimating the completion time and matching against the new 
target completion time for Phase 1, un-suitable configurations can be discarded. Note that 
this may also result in changes in the way that the Phase 2 services are deployed (to increase 
speed of Phase 2 processing in order to save total time). At the end of this re-scoring, a new 
CDP Playbook will be selected. 

This new CDP Playbook will then be sent to ADS Deployment, which will compare the current 
deployment against the new deployment and operationalize the needed changes. These 
changes might involve requesting another machine to increase parallelism of the service, 
which would be allocated by the Cluster Management component and would be subject to 
the same data and network configuration as during the initial deployment (e.g. to assure that 
the needed communication ports are open).  This might involve physically starting a new copy 
of the target service on the additional machine (if the application is self-configuring). 
Otherwise, if the application integrates a process management platform like Apache Flink, 
then this would involve starting a management daemon on the new machine, effectively 
adding the machine to the ‘Flink Cluster’ for the application, which will seamlessly scaling 
computation up to use the newly available resources.  

Concluding remarks 

To conclude this example, let’s assume that this deployment correction increases throughput 
of Phase 1 sufficiently to catch up to the target completion time set by the user; if it did not, 
then other run-time adaptations may be attempted and/or the user informed.   
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3.5. Design 

The conceptual view of the Data-driven Infrastructure Management capability shows the 
main high-level functions as well as the data flows among them (see Figure 4).  

 

Figure 4 – Data-driven Infrastructure Management capability - conceptual view. 

 

These functions are organized in (realized by) five solution building blocks (components), 
which corresponds to the five tasks within WP3: 

1. Cluster Management (WP3-T3.1): Infrastructure services providing cluster computing 

and data storage resources and is responsible for deploying the BigDataStack platform 

and associated container orchestration platform on physical hardware. For opaque 

clusters, this also involves dynamic scaling of the orchestrated hardware on-demand. 

The component also provides an API to support (re-)configuration actions or resources 

requests by the ADS Deployment. This provides functionality for BigDataStack 

operations – Steps 1 and 2 (see Section 3.1). 

2. Dynamic Orchestration (WP3-T3.2): Runtime adaptation service in charge of resource 
re-allocation, storage and analytics re-distribution, re-compilation of network 
functions and re-deployment or applications and data services. This provides 
functionality for BigDataStack operations – Steps 5 and 7 (see Section 3.1). 

3. ADS Ranking & ADS Deployment (WP3-T3.3). Self-optimized deployment service for 

application components and data services, which are orchestrated following resource, 

application and data-aware deployment patterns. This provides functionality for 
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BigDataStack operations – Steps 4, 5 and 7 (see Section 3.1). 

4. Triple Monitoring and QoS Evaluation (WP3-T3.5). It consists of the resource clusters, 
data and application-level metrics collectors, the monitoring manager (which also 
gathers database related metrics) and the QoS evaluator, which evaluates Service-
Level Objectives (SLOs) over those metrics. This provides functionality for 
BigDataStack operations – Step 6 (see Section 3.1). 

5. Networking (WP3-T3.4). Data-driven networking services satisfy the diverse 

networking needs among computing and storage resources as well as application 

components and data services. It plays a critical role in the optimal (self-) management 

of the infrastructure to satisfy QoS. It is important to note that this component not 

only collects networking metrics, but it also applies the (re-) configuration actions over 

networking resources requested by the ADS Deployment. It provides functionality for 

the BigDataStack operations – Step 3 and 7 (see Section 3.1). 

Figure 5 describes the capability from a lower-level logical perspective, including the main 
components, their interfaces and dependencies. Dependencies from/to external components 
are also shown; specifically, the need to have access to the Decision Tracker and to provide 
service to the Application Dimensioning Workbench. 

 

Figure 5 – Data-driven Infrastructure Management capability - components view. 
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Figure 6 shows the sequence of activities and the interplay between the different components 
to give support to the BigDataStack seven-step process (operations time). 

 

 

Figure 6 – Data-driven Infrastructure Management capability - activity view. 
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4. Implementation and Experimentation 

This section introduces the experimental scenarios and the methodological approach WP3 is 
taking to answer important questions and validate certain hypothesis to develop the Data-
Driven Infrastructure Management capability. The section explains the three prototypes (to 
be released at M12, M15 and M18) which are meant to address three different scenarios. 
They will let WP3 to verify and validate the solution before facing the full integration with 
WP4 and WP5 components and the full deployment of the use cases implementations (WP6). 

4.1. Experimental Setting 

The BigDataStack use case we have chosen to evaluate and validate the Data-Driven 
Infrastructure Management prototypes in the upcoming 7 months is the so-called Connected 
Consumer (CC): Multi-sided market ecosystem, provided by ATOS WORLDLINE-EROSKI2. Some 
of the highlights of the use case are (please refer to D2.1 for the full description): 

• EROSKI, one of the largest distribution companies in Spain with more than 35.000 
workers, is collaborating with ATOS in the definition and test of a use-case related to 
the grocery business. 

• EROSKI needs data insights to better understand how to create and offer added-value 
services to their consumers. 

• The use case objective is to predict both which products and which promotions are 
more likely to be interesting for the customers at the right time. In this way, EROSKI 
can adapt the most appropriate message (i.e. product and/or promotion) for each 
customer and send it at the right time and through the most appropriate channel, thus 
increasing the ROI of their marketing activities.  

4.1.1. Scenario 1: Inference without Data Access (M12) 

An application engineer wants to deploy a recommendation model implemented by a data 
scientist. This recommendation system will provide product recommendations for customers 
visiting the EROSKI’s e-commerce web site. Customer events in such a site will continuously 
feed the system to improve the recommendation model.  

- The analytics application is made of two services (see Figure 7):  

o Normalization, which receives customer events and updates the Customer 
Preferences table with the customer activity. This table is then used as input 
in the Inference process. 

o Inference, takes the up-to-date Customer Preferences table and compute 
Product Recommendations table, which contains the list of products 
recommended per user.  

- These application services contain state (i.e. Customer Preferences and Product 
Recommendations tables). Therefore, they cannot scale horizontally unless we 
provide a persistent storage. In M12 we won’t integrate with a datastore, so we flush 

                                                 
2 https://www.eroski.es/ 

https://www.eroski.es/
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the data to an already made, in-memory, distributed cache, so that the application 
services can become stateless and therefore horizontally scalable.  

 

Figure 7 – Experimental scenario 1: Inference without data access (M12) - data flow view. 

 

Requirements and constrains: 

• A cache (in-memory) service is required to be deployed alongside the Normalization 
and Inference application services to store Customer Preferences and Product 
Recommendations tables and hence let them scale out (horizontally). 

• The Inference is based on cross-selling by “collaborative filtering.” The algorithm used 
will be one of those already implemented in the NumPy library for Spark. 

• Different experiments on the performance of the recommendation system will be 
accomplished, including the evaluation of latency for the Normalization service and 
throughput for the Inference service. 

• Different experiments executing the Inference process in batches of different sizes. 

• The Inference will be executed on a Spark engine, which will be bundled and deployed 
together with the recommendation algorithm in a single container (stand-alone 
deployment). The single-node Spark configuration seek to serve as a first step to 
deploy Spark operations: In scenarios 2 and 3 the configuration will pass to be a more 
realistic multi-node cluster.  

Customer events 

The analytics application which is the subject of the scenarios is meant to provide service to 
EROSKI’s e-commerce web site, specifically, product recommendations to customers. The 
analytics application service computes recommendations and the web application uses those 
recommendations to decide which products to show to the customer visiting the web; for 
each product it gives the option to view the detail of the product, add the product to the car, 
or discard that product so that it is not shown again as a recommendation to that customer. 

Al these customer actions are captured as events and notified to the Normalization service 
which registers them in the Customer Preferences table, which in turn serves as input to the 
Inference service to update the Product Recommendations table. The definition of those 
events is the following: 

• Recommendation shown (attributes: customer id, id recommendation, list of product 
ids). It will be used to discard a recommended product if the client has not shown 
interest in it (has not displayed it and has not added it to the car) after being shown 
as a recommendation a certain (configurable) number of times. 
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• Product added to the cart (attributes: id client, id recommendation, id product). We 
will give more weight to the recommendation of this product for this client. 

• Product displayed (attributes: id client, id recommendation, id product). We will give 
more weight to the recommendation of this product for this client (but less than if you 
add it to the car). 

• Product discarded (attributes: id client, id recommendation, id product). Directly this 
product will be eliminated from the list of product recommendations for the given 
customers. 

Deployment 

Both services are expected to the containerized and deployed on Kubernetes as a single pod. 
This means that the scaling of the services will the carried out together, that is, increasing or 
decreasing the number of replicas at the pod level and not at the container level (i.e. scaling 
in and out). 

The other action that can be carried out to dynamically adapt the deployment is to change 
the number of vCPUs per container (i.e. scaling up and down). 

Quality of service 

In different settings, the data scientist will need both processes to run with varying constraints 
of response time. Moreover, the throughout will be also an important consideration for the 
application engineer.  

Other application-specific metrics (e.g., precision of the prediction, the success rate of the 
product recommendation) are not considered in this scenario. 

4.1.2. Scenario 2: Inference with Data Access (M15) 

Scenario 1 at M12 is enhanced by considering the persistence of both Customer Preferences 
and Product Recommendations tables in a data store, LeanXcale database. 

 

Figure 8 – Experimental scenario 2: Inference with data access (M15) - data flow view. 

 

Requirements and constrains (refine scenario 1): 

• A cache (in-memory) service is required to be deployed alongside the Normalization 
and Inference application services to store Customer Preferences and Product 
Recommendations tables and hence let them scale out (horizontally). 
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• The cache (in-memory) service permanently store Customer Preferences and Product 
Recommendations tables in a LeanXcale database every time there is write operation. 

• The Inference is based on “customer habits” by “individual behavioural analytics.”  

o Instead of producing the whole table for all the customers in every run, the 
inference process updates just the product recommendations for the 
customer/s whole events are received in a given time window. 

o The algorithm used will be one of those already implemented in the NumPy 
library for Spark. 

• The Inference will be executed on a multi-node Spark cluster, so there is a need to 
come up with its optimal deployment (e.g., number of nodes, flavour of VMs, etc.). 

• Different experiments executing the Inference as streaming analytics in micro-batches 
and real-time (i.e., with the arrival of every single event) will be accomplished. 

Deployment 

The application components are deployed in Kubernetes in the same way as in Scenario 1. For 
this scenario, the LeanXcale data base is expected to be deployed and operated as a WP4 
prototype. This means it deployment is not part of this scenario, which focuses on the 
integration between W3 and WP4 regarding the storage layer and the impact on the analytics 
application layer. 

Quality of service 

Like in the previous scenario, different experimental settings with different QoS targeting low 
response time and high throughput will be run.  

At least one application-specific metric (e.g., precision of the prediction or the success rate of 
the product recommendation) will be considered in this scenario.  

4.1.3. Scenario 3: Integration with WP5 and WP4 

Scenario 2 at M15 is enhanced by considering the integration with components and services 
from WP4 and WP5. For example: 

- As the data cleansing pre-processing is a service from WP4, a process to clean and 
enrich the events before being submitted to the Normalization will be integrated. 
Note this process will be implemented through the Real-time Complex Event 
Processing (CEP) resulting from T4.6 (see D4.1). 

- As the application process modelling tool is a component from WP5, the 
Normalization + Inference process will be declaratively modelled in the tool and the 
automated deployment from that tool validated. Note this tool will be implemented 
over Node-RED at T5.2 (see D5.1). 

The final decision about the set of integrations to be tested at M18 will need to wait until 
M15, when WP3 prototypes and scenarios 1 and 2 are validated, and WP4 and WP5 have 
finalized to validate their corresponding prototypes and scenarios. The idea is to select those 
individually-validated WP3, WP4 and/or WP5 components and features to be evaluated and 
validated in an integrated end-to-end BigDataStack use case scenario at M18. 
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4.2. Experimental Plan 

This section explains the experimental design, including success criteria (KPIs to evaluate or 
hypothesis to validate) at the global (capability) level. It also describes the methodology. 

4.2.1. Research questions 

The following questions to be addressed in the experimental scenarios have been formulated 
in terms of the Data-Driven Infrastructure Management’s conceptual model (see Figure 4). 

A 1. How the dynamic 
orchestrator and ranking 
& (re-) deployment 
components share 
responsibilities? 

2. How do they work 
together to provide a 
coherent and optimal 
runtime adaptation 
behaviour? 

 

 

B 3. How is the interplay 
between Dynamic 
orchestrator and QoS 
Evaluation?  

4. What information does 
the former need for the 
latter? When and how 
(through which 
mechanism)?  

5. Does it need violation 
events or violation 
metrics (e.g., number of 
violations in a given 
period)? 

 

 

C 1. What application-level 
metrics do we need to 
monitor and how? 

2. Can we prepare the 
monitoring system to 
collect any application-
level metrics related to 
QoS attributes of 
interest to engineers and 
data scientists?    
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D 1. How does the QoS 
evaluation component 
get to know what QoS 
attributes or KPIs to 
evaluate? 

2. How does it determine 
the relationship between 
them and the metrics 
collected by the 
Monitoring System?  

3. Do we need to have a 
predefined catalogue of 
QoS attributes or KPI 
specifications to be 
shared among all actors 
(sort of QoS ontology)? 

 

 

 Table 2 – Research questions. 

4.2.2. Research method 

We will be developing prototypes in the upcoming seven months to validate certain 
hypothesis on answers to the above-mentioned questions. These prototypes will be delivered 
at M12, M15 and M18, each of them representing milestones in the WP3 research and 
innovation plan. 

The (experimental) evaluation scenarios have been extracted from the following BigDataStack 
use case: Connected Consumer (CC): Multi-sided market ecosystem. Along with the use case 
provider ATOS WORLDLINE-EROSKI, we have identified realistic requirements and constraints 
to deploy different functionality of their application by using the different prototypes of the 
components of the Data-driven Infrastructure Management solution. 

The three different scenarios (see section 4.1) focus on different aspects of the solution to 
answer different questions (see section 4.2.1). Nevertheless, at M18 it is expected we 
showcase the interplay between all BigDataStack capabilities within one or more integrated 
end-to-end scenarios from the BigDataStack use cases. 

4.3. Implementation Roadmap 

Table 3 summarizes the experimentation (evaluation and validation) plan for the Data-driven 

Infrastructure Management capability for the upcoming seven months: 

 M8 M15 M18 

Milestone Prototyping Validation Implementation 

Objective The consortium uses 
the UBI-provided 
OpenStack-based 

 The consortium starts 
deploying services in 
the (cloud native) 

 ALL WPs are obligated 
to use the (cloud native) 
WP3-provided 
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computing 
infrastructure to deploy 
and run virtual 
machines 

WP3-provided 
Kubernetes-based 
computing 
infrastructure to 
deploy and run 
containers by WP3 
 

Kubernetes-based 
computing 
infrastructure, when 
technically possible.  
 

Success 
criteria 

The different partners 
deploy and test 
BigDataStack services 
directly on virtual 
machines. Ideally, using 
containers as unit of 
deployment. 

ALL WP3 services are 
deployed and running 
on Kubernetes to test 
the platform. 

N/A 

WP3 tests its tools for 
cluster management 
(Openshift), monitoring 
and dynamic 
adaptation 

Partners can deploy 
their BigDataStack 
services on 
Kubernetes. At least, 
two-three components 
of WP4/WP5 are 
deployed. 

N/A 

 Prototypes at M12 and 
M15 successfully pass 
experimentation 
scenarios 1 and 2.  

Prototypes at M18 and 
M15 successfully passes 
experimentation 
scenario 3. 

Table 3 - Data-driven Infrastructure Management capability experimentation phases. 

Table 4 summarizes the Data-driven Infrastructure Management capability implementation 

roadmap for the upcoming seven months: 

 M12 M15 M18 

Scenario 1 2 3 

Cluster 
Management 

OpenStack 
integration 
Gateway 

OpenStack integration 
Operators 
Gateway 

OpenStack integration 
Cluster performance 
improvements 
Operators 
Gateway 

Dynamic 
Orchestrator 

Agent 
Interpreter 

Agent 
Interpreter 

Agent 
Interpreter 

Ranking & 
Deployment 

ADS-Ranking 
ADS-Deploy 

ADS-Ranking 
ADS-Deploy 

ADS-Ranking 
ADS-Deploy 

Triple Monitoring 
& QoS Evaluation 

SLALite 
Prometheus 
Graphana 
Cluster metrics 

SLALite 
Prometheus 
Graphana 
Cluster metrics 

SLALite 
Prometheus 
Graphana 
Cluster metrics 
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Data metrics Data metrics 
Networking metrics 
Application metrics 

Data metrics 
Networking metrics 
Application metrics 

Information-
driven Networking 

N/A Native Kubernetes 
Networking & Policies 
Enforcement 
Calico 
Istio 

Native Kubernetes 
Networking & Policies 
Enforcement 
Calico 
Istio 

Table 4 - Data-driven Infrastructure Management capability implementation plan. 

  



 
 Project No 779747 (BigDataStack) 

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1 

 Date: 5.12.2018 

 Dissemination Level: PU 

 

 page 32 of 87 bigdatastack.eu 

5. Cluster Management 

The cluster management component is in charge of both deploying the BigDataStack 
components as requested, as well as to keep its status overtime. This will not only include the 
containers but the related services and even the OpenShift Origen Kubernetes Distribution 
(OKD) cluster itself. In addition, it is in charge to adapt the current deployments to the new 
preferred status requested by the above layers, for example to increase the size of the cluster, 
or scale up/down a given application. 

5.1. Requirements specification 

To facilitate the understanding of the design as well as the challenges addressed by this 

component, the requirements related to this component have been brought from D2.2 and 

literally included into this section. Please note the following requirement tables are compiled 

together with the rest of requirements of BigDataStack in D2.2, and that they are included in 

here for the reader’s convenience. 

 Id Level of detail Type Actor Priority 

REQ-CM-01 System FUNC Developer MAN 

Name Support OpenShift installation on OpenStack VMs 

Description Include the needed steps on the OpenShift installer to handle OpenShift 
cluster installation on top of OpenStack resources, i.e, VMs, networks, 
volumes, etc. 

Additional 
Information 

This needs to be done in the ‘upstream’ way so that it is supported also 
after the project lifecycle. It entails modification to different repositories, 
not only the openshift/installer (https://github.com/openshift/installer) 
but also other related such as: 

• cluster-network-operator3 

• cluster-api-provider-openstack4 

• gophercloud5 

Table 5 - Support OpenShift installation on OpenStack VMs (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-CM-02 System PERF Developer MAN 

Name Avoid double encapsulation of network packages  

Description Integrate Kuryr on the OpenShift installer to avoid the double encapsulation 
problem due to using 2 different overlays (OpenStack SDN and OpenShift 
SDN on top). Kuryr enables containers running on top of OpenStack VMs to 
use the same SDN as the VMs itself, i.e., the OpenStack SDN. Thus, avoiding 

                                                 
3 https://github.com/openshift/cluster-network-operator 
4 https://github.com/kubernetes-sigs/cluster-api-provider-openstack 
5 https://github.com/gophercloud/gophercloud 

https://github.com/openshift/cluster-network-operator
https://github.com/kubernetes-sigs/cluster-api-provider-openstack
https://github.com/gophercloud/gophercloud


 
 Project No 779747 (BigDataStack) 

 D3.1 – WP 3 Scientific Report and Prototype Description – Y1 

 Date: 5.12.2018 

 Dissemination Level: PU 

 

 page 33 of 87 bigdatastack.eu 

the double encapsulation and enabling a remarkable throughput gain, 
needed for handling the data at the BigDataStack components. 

Additional 
Information 

Similarly, to REQ-CM-01, this needs to be done in the ‘upstream’ way so 
that it is supported after the project. It entails modifications to the same 
repositories plus the addition of a kuryr operator that will handle the kuryr 
related operational actions, 

Table 6 - Avoid double encapsulation of network packages (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-CM-03 System ENV Developer DES 

Name Spark operator 

Description This operator will be responsible for handling the spark cluster, not only its 
installation but also the scaling actions. It will offer an API to the spark 
management through the OpenShift API. 

Additional 
Information 

This is related to the dynamic orchestrator, as the optimization actions 
could be then simply triggered through standard OpenShift API commands 
(e.g., modifying the information at the associated spark ConfigMap) 

Table 7 - Spark Operator (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-CM-04 System ENV Developer DES 

Name Accept requests to allocate additional resources to one of the storage layer 
components 

Description The Adaptable Distributed Storage component can be scaled in/out 
independently, considering decisions based on its internal metrics and 
handle on its own the reconfiguration of the internal data regions. Due to 
this, it is necessary from the Cluster Management to provide a mechanism 
that allows the storage layer to request for additional resources or the 
release of already provided ones. 

Additional 
Information 

This is closely related to requirement REQ-ADS-04 “Be able to request 
additional resources from the infrastructure layer,” described in D4.1. 

Table 8 - Accept requests to allocate additional resources to the storage layer (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-CM-05 System ENV Developer OPT 

Name Force the storage layer to release some of its available resources 

Description The cluster management might identify that the overall BigDataStack 
platform is running out of available resources. To ensure the execution of 
crucial components, it might decide to reduce some of the already allocated 
resources for some services, for the benefits of others. Due to this, it should 
be able to request the release of the storage resources and wait for its 
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proper response. The storage should be able to reject such requests, in 
cases that could lead to data loss. 

Additional 
Information 

This is close related with requirement REQ-ADS-05 “Being able to release 
resources and adapt if resources are deallocated from the infrastructure,” 
as described in more details in D4.1. 

Table 9 - Force the storage layer to release some of its available resources (system requirement). 

5.2. Design 

To make BigDataStack components widely available and mainly focus on its functionality, we 
have selected OpenShift as our cluster management engine over which we will build our 
functionality. OpenShift is based on Kubernetes with extra options for DevOps, as well as for 
their life-cycle management such as image build automation, deployment automation or 
Continuous-Integration/Continuous-Delivery (CI/CD). Having Kubernetes at the core, 
provides all the pods (i.e., group of containers with a single IP) orchestration functionality 
needed to ensure pods scheduling, replica set management, load balancing, etc. 

By using OpenShift at the core of our cluster management, we focus on the following points 
at the cluster management layer to better support BigDataStack operations: 

• OpenStack integration 

• Cluster performance improvements 

• Operators 

• Gateway 

Figure 9 show an overview of the existing components and their interactions. The upper layers 
(such as ADS Ranking & Deploy component, or the Triple Monitoring) will communicate with 
the cluster management through the OpenShift API. As the figure highlights, this API is 
extended by creating different operators that expose the functionality of their respective 
components, enabling actions such as scaling a Spark cluster or extend the OpenShift cluster. 
Note in the later, that will also entail different subsequent actions that are handled by the 
operators. For instance, upon an OpenShift cluster scale up, the operator will need to call 
OpenStack to create the needed resources (in this case VMs and Volumes), and then it will 
need to configure them: install the required Openshift components, as well as include the 
monitorization components to account for the new resources. 
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Figure 9 – Cluster Management - components view. 

 

5.2.1. OpenStack integration 

OpenShift clusters can be installed on top of different infrastructures, e.g., directly on physical 
servers or on top of VMs in a private (OpenStack) or public cloud (Amazon). Currently, the 
OpenShift installer6 supports the installation and management of clusters on top of physical 
servers or on top of VMs (on AWS).  

As expected, the best performance can be obtained when it is running directly on bare metal 
servers. However, to make BigDataStack functionality to a larger group, and due to the wide 
use of OpenStack for private clouds, we target the integration of OpenStack into the 
OpenShift installer as part of the BigDataStack contributions. This means that we need to 
make the installer able to manage OpenStack resources, such as VMs or Volumes. Not only 
for the initial installation, but also for the management operations such as cluster scaling 
up/down or node failures. Note this support will be integrated as part of the installer as well 
as part of the cluster management operators (see next subsection 5.2.3). 

 

 

                                                 
6 https://github.com/openshift/installer 

https://github.com/openshift/installer
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5.2.2. Cluster performance improvements 

Due to the BigDataStack requirements, not only related to fast data processing but also 
speeding up communications between the different components running on top of 
OpenShift, there is a need for performance improvements into the network data plane. 
Simply installing OpenShift/Kubernetes on top of OpenStack VMs means that, on the one 
hand you have the OpenStack network overlay (to manage the traffic between the VMs), and 
on the other hand the OpenShift SDN (e.g., openshift-sdn). This leads to the so-called “double 
encapsulation problem” which impose severe performance degradation on the network 
throughput (besides the added complexity on network management and debugging upon 
failures). To avoid this problem Red Hat has been working on an OpenStack project named 
Kuryr7 that enables the usage of OpenStack Software-Defined Networks (SDNs) at the 
OpenShift cluster running on top of the VMs, therefore avoiding the double encapsulation 
problem. As a result, we plan on also integrating Kuryr on the OpenShift installer as well as 
creating an operator for its management (see Figure 10). 

 

 
 

Figure 10 – Red Hat Kuryr’s architecture to avoid the “double encapsulation problem.”7 

This however also imposes certain requirement on the OpenStack side. The next components 
need to be installed and or have specific configuration: 

• Octavia (LoadBalancer as a Service) component need to be installed, and with it, its 
dependencies such as Barbican 

• Neutron needs to be configured with Trunk ports support. Depending on the used ml2 
driver, the configuration can be slightly different. For instance, it is out of the box if 
OVN is being used, but if ML2/OVS is being used, it needs to be enabled, and the 

                                                 
7 https://docs.openstack.org/kuryr-kubernetes/latest/ 

https://docs.openstack.org/kuryr-kubernetes/latest/
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openvswitch driver needs to be set to enforce security group policies on the 
containers. 

• Depending on the installed, Heat is also needed to create a stack containing all the 
OpenShift related resources, i.e., VMs, Volumes, Networks, LbaaS, … 

• And of course, the user quota needs to be adapted to the container deployments 
scale, i.e., it will not be enough with just a few ports as each container will be using a 
neutron port. Thus, some of the resources quota need to be increased by an order of 
magnitude (depending on the side of the OpenShift deployment) 

5.2.3. Operators 

Operators are a relatively new concept for packaging, deploying and managing 
Kubernetes/OpenShift applications. In this context, an OpenShift application is defined as an 
application (set of containers, configmaps, CRDs, services, etc.) that is both deployed on 
OpenShift and managed by the OpenShift API. 

As an example applied to the BigDataStack, we plan to work on a Spark operator which 
manages both the installation of the Spark cluster on top of OpenShift, as well as its 
operations over time. This cluster can then be managed through OpenShift commands, for 
instance scaling it up or down by simply modifying the associated Custom Resource 
Definitions (CRDs) where the Spark cluster is defined. Thus, this could be used by the dynamic 
orchestrator to easily trigger the optimizations on the deployment. 

Figure 11 – Kubernetes operators – conceptual view. 

It is common to think of Operators as the runtime that manages an application/service on 
OpenShift. It leads us one step closer to manage the cluster in a declarative way, i.e., it 
watches over your OpenShift environment and ensures that the state of your cluster or 
applications conforms with what you requested. More advanced operators are designed for 
handling applications upgrades seamlessly or even perform complete cluster scaling 
operations upon resources shortage or failures. 

As highlighted on Figure 9, the operators API is offered through the own OpenShift API, 
therefore having well-defined primitives, and enabling an easy integration with other 
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components. The operators need to take care of the actions that needs to be triggered when 
the CRD resource is modified, to achieve the new specified status. 

5.2.4. Gateway implementation 

The gateway for the BigDataStack engine can also be implemented as part of OpenShift, in 2 
different ways depending on the final requirements: 

- By using OpenShift routes: Route is a way to expose OpenShift services by giving it an 
externally reachable hostname, like www.example.com. It has the option to perform 
the routing based on paths, i.e., we can use it to redirect some queries to the CEP 
component (i.e., www.example.com/cep/…) and others to the Alarm component (i.e., 
www.example.com/alarms/...) 

- By using Istio service mesh: A service mesh is a network of microservices that enables 
applications and the interactions among them. It offers functionality like load-
balancing, fine grain traffic control, access control, logging, tracing, etc., through 
sidecards containers associated to the applications pods. One offered functionality is 
Istio-Gateways which controls the exposure of services at the edge of the mesh. This 
could be used to tie gateways to specific virtual services that can perform the extra 
required actions that the gateway may require besides redirecting the traffic to the 
desired endpoint. 

5.3. Early Prototype 

Initial support for OpenStack has been included into the OpenShift installer to handle the 
creation of OpenStack resources.  

Figure 12 – Best practices for deploying OpenShift on top of OpenStack. 

  

http://www.example.com/
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This support extends the OpenShift installer to create OpenStack VMs and later install the 
packages, configuration files, keys, services, etc., needed to install and configure the 
OpenShift cluster on top of them. It includes the basic operators and prepares the system for 
the new ones to be created as part of the BigDataStack project. 

Figure 12 shows the best practices (configuration) for deploying OpenShift on top of 
OpenStack. As it can be seen it includes several OpenStack resources types: Networks, 
LoadBalancers, VMs, Volumes, etc. 

The next table shows the minimum number of each OpenStack resource type that are needed 
for a minimal installation of OpenShift on top of OpenStack: 

OpenStack Resources Requirements 

Virtual Machines - 1 VM for the Bastion that triggers the installation 

- 3 VMs for the OpenShift/Kubernetes masters (it can be 
reduced to 1 if no HA is needed) 

- 3 VMs for the Infrastructure Nodes (this is needed for routes 
and registry functionalities) 

- 3 VMs for the App nodes (where users’ applications are run) 

Volumes - 1 Volume per VM (master, infra, app) 

- No need to have a volume for the master 

- This is a soft requirement, as the VMs ephemeral disk can be 
used too, but this may lead to data lost upon VM deletion 

LoadBalancers - 1 needed in front of the master nodes for HA 

- 1 needed in front of the infra nodes (for defining routes) 

- 1 will be created for each new OpenShift service 

Networks - Public net/subnet 

- VMs net/subnet 

- Pods net/subnet 

- Services net/subnet 

- +1 extra net/subnet for each OpenShift project (to provide 
network isolation between projects) 

Floating IPs - 1 for the LoadBalancer in front of the masters 

- 1 for the LoadBalancer in front of the infra 

- 1 for each service of LoadBalancer type 

Routers - 1 for connecting every network 

Security groups - There are a few security groups needed for the installation, 
plus a few more for the usage. So, recommended limits here 
is over 100s, e.g.: 500 
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OpenStack Resources Requirements 

Ports - One port is needed for each VM, plus one per pod. As before, 
it could be set to 500us 

Table 10 – Cluster management - minimal installation of OpenShift on top of OpenStack. 

5.4. Use Case Mapping 

N/A, cluster management will be used by all use cases. 

5.5. Experimental Plan 

The experimental plan will first focus on individual components as well as testing automation. 
The initial actions points are: 

• Automate OpenShift installation testing to ensure no performance regressions. 

• Automate Operators testing to ensure their functionality is not broken by new 
updates/additions. 

• Ensure BigDataStack operators are agnostic of the infrastructure. This means they are 
simply applications running on top of OpenShift and should not be aware of where the 
OpenShift cluster is running, e.g., on top of bare metal servers, or OpenStack VMs or 
any Public Cloud (AWS, Azure, …). Note some platform dependent operators, such as 
kuryr-SDN or other infra related ones, should be aware of the infrastructure as they 
are the ones in charge of configuring it. 

• Initial integration testing of the different components relying on the cluster manager 
and their operators. 

5.6. Next Steps 

The plan is to continue with the OpenStack integration into the OpenShift installer, with 
special focus on Kuryr integration to avoid double encapsulation and therefore creating an 
OpenShift installation with improved network performance. 

In addition, we will focus on Openshift operators development to easy enable the different 
BigDataStack features on the OpenShift cluster. Among others: Kuryr-SDN operator and Spark 
operator. 
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6. Dynamic Orchestration 

The Dynamic Orchestrator will provide more flexibility and enhanced performance for 
applications that utilize the BigDataStack. The application’s performance and compliance with 
its requirements will be monitored during runtime and when a requirement violation exists, 
the Dynamic Orchestrator will change the application’s deployment in order to comply with 
all requirements. 

6.1. Requirements specification 

To facilitate the understanding of the design as well as the challenges addressed by this 

component, the requirements related to this component have been brought from D2.2 and 

literally included into this section. Please note the following requirement tables are compiled 

together with the rest of requirements of BigDataStack in D2.2, and that they are included in 

here for the reader’s convenience. 

 Id Level of detail Type Actor Priority 

REQ-DO-01 Stakeholder FUNC Developer MAN 

Name Correction of Requirements or SLOs Violations 

Description When an application or service is running, the orchestrator shall detect the 
violation of an application requirement or service level objective (SLO) and 
send a signal to the ADS-ranker to trigger a change in the deployment to try 
to satisfy the requirements or SLOs. 

Additional 
Information 

N/A 

Table 11 - Correction of Requirements and SLOs Violations (stakeholder requirement). 

 Id Level of detail Type Actor Priority 

REQ-DO-02 Stakeholder FUNC Developer MAN 

Name Decision Efficiency 

Description When the violation of a requirement has been detected, the orchestrator 
shall be able to decide what modification to the deployment (e.g. change 
the number of replicas or the number of vCPUs) has the highest probability 
of improving the requirements or SLOs satisfaction, as long as any change is 
possible (i.e. all resources are at its full capacity due to limits).  

Additional 
Information 

N/A 

Table 12 - Decision Efficiency (stakeholder requirement). 

 Id Level of detail Type Actor Priority 

REQ-DO-03 System FUNC Developer MAN 

Name Resources Limits 
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Description The orchestrator shall be able to receive a trigger from the ADS-Ranker 
when a deployment parameter, such as the number of replicas, the number 
of vCPUs or the assigned cluster memory, cannot be further increased or 
decreased (i.e. this resource has reached its maximum or minimum possible 
value) and use this information in its own decisions. 

Additional 
Information 

The complete list of deployment parameters to be taken into account still 
needs to be determined. 

Table 13 - Resources Limits (stakeholder requirement). 

 Id Level of detail Type Actor Priority 

REQ-DO-04 Stakeholder FUNC Developer DES 

Name Orchestration for Improvements 

Description When an application or service is running, the orchestrator shall detect 
changes in the system status or inputs (e.g. less new events per minute) and 
trigger a change in the deployment that results in lower costs (e.g. to use 
less replicas) without compromising the application functioning. 

Additional 
Information 

N/A 

Table 14 - Orchestration for Improvements (stakeholder requirement). 

6.2. Design 

The Dynamic Orchestrator observes the application performance through the monitoring of 
runtime system metrics or Key Performance Indicators (KPIs) and Service-Level Objective 
(SLO) violations, which are received from the Triple Monitoring and QoS Evaluation 
component. When a requirement or SLO violation is detected, the Dynamic Orchestrator 
decides how the current deployment should be modified and sends a trigger (along with 
deployment change recommendations) to the ADS Ranker to perform the redeployment. 

 

Figure 13 – Dynamic Orchestrator – conceptual diagram. 

To implement the Dynamic Orchestrator’s logic, we propose a Reinforcement Learning (RL) 
approach that learns about the application’s performance during runtime and learns, based 
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on its own experience, what kind of changes should be performed to satisfy requirements and 
SLOs. The design of the Dynamic Orchestrator has been completed to provide the following 
overall functionality (see Figure 14): 

 

 

Figure 14 – ADS Ranking Interaction Diagram 

1. The Triple Monitoring informs the Interpreter about the current system metrics and 
the SLO violations. 

2. The Interpreter, converts these metrics and SLO violations in states and rewards. 

a. The states represent the system status in a discrete space. 

b. The rewards indicate the Reinforcement Learning Agent if an executed action 
was “good” or “bad” in terms of requirements and SLOs compliance (e.g. if the 
requirements and SLO violations disappeared after the execution of an action). 

3. The Interpreter sends the current state of the system to the RL (Reinforcement 
Learning) Agent and according to this, the RL Agent selects an action that should be 
executed by the ADS-Ranker. 
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a. The actions are type of changes in the deployment such as change the number 
of replicas, change the number of vCPUs or change the vRAM assigned (note: 
these are just some of the changes that are being considered, the full list of 
deployment changes still needs to be determined). 

b. One of the actions is to keep the current deployment. 

4. Once an action has been executed, the interpreter receives the new metrics and SLO 
violations, calculates the reward and sends it to the RL Agent. 

5. The RL Agent updates its state-action ranking (Q-table in RL terminology). 

In addition, the Interpreter updates the current state which will then be observed by the RL 
Agent to take the next action. 

6.2.1. Adaptable Distributed Storage interplay 

The Adaptable Distributed Storage (as described in D4.1) will not rely on the Dynamic 
Orchestrator or the Ranking & Deployment to scale in/out its resources; rather, because of 
the larger number of metrics available internally, it integrates its own Elasticity Manager 
subcomponent that is responsible for taking this kind of decisions for the storage layer. As a 
result, the storage can be re-configured automatically, moving data regions across its current 
nodes and scale in or out to be adapted under diverse workloads. As these redeployments 
are being triggered separately, the Dynamic Orchestrator should be aware of those, and 
postpone any redeployment action on the application level until the reconfiguration of the 
storage is finished, and the system is balanced.  

Therefore, the Dynamic Orchestrator needs to consider there is a second dynamic adaptation 
mechanism acting at the storage layer level. This second adaptation component (i.e., Elasticity 
Manager) will inform the Dynamic Orchestrator component regarding reconfigurations of the 
data storage layer; in fact, this has been specified as a requirement imposed on the Adaptable 
Distributed Storage (see REQ-ADS-06 in D4.1) by the Dynamic Orchestrator. More specifically, 
the Adaptable Distributed Storage will notify information regarding pending redeployments 
of the storage, when the process of data reconfiguration starts and finishes, along with the 
current deployment of this layer.  

This information helps the Dynamic Orchestrator to determine the best course of action in 
this scenario: to wait until the data layer reconfiguration finishes and to re-evaluate the 
performance afterwards, or to perform a quick change that will deliver a faster improvement 
until the data layer changes take effect. 

6.3. Early Prototype 

An early prototype of the Dynamic Orchestrator has been developed using a Reinforcement 
Learning (RL) based approach. We have chosen RL because it gives the orchestrator the ability 
to learn from its own experience. This means that the orchestrator will learn from the 
application and the deployment itself during the application runtime, making it more flexible 
than any predefined rule-based approach.  

The dynamic orchestration problem has been analysed and framed as a RL problem, by 
defining the states-action configurations as well as the reward function. The states are 
determined by the current metrics of the system, and the actions are referred to the type of 
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change needed in the deployment to improve the current performance. Because of the 
several metrics and actions involved, the Reinforcement Learning agent will have to deal with 
a large action-state. To solve this problem, we are looking into preselecting the most relevant 
metrics for the application and discretizing its values in order to reduce the states. A similar 
preselection step is being considered to reduce the actions space. To have a more in-depth 
view of our planned approach, see Section 6.6. 

In addition, we have implemented an early prototype of the Dynamic Orchestrator using Q-
learning on Python. In this implementation, we use metrics from the applications’ inputs and 
the CPU to define the RL state and three actions: to increase or decrease the number of 
replicas or to keep the current deployment. We have tested the approach using a simulated 
environment and application, in which the Dynamic Orchestrator performed better than a 
rule-based implementation.  

6.4. Use Case Mapping 

The BigDataStack use case that has been chosen to validate the dynamic orchestrator of 
BigDataStack is the Connected Consumer: Multi-sided market ecosystem, provided by ATOS 
WORLDLINE-EROSKI.  

Most people do their groceries after 6 p.m. since this is the time they finish work and head 
home. This creates a peak time for cashiers at supermarkets, in which even though more 
checkout points are opened, queues of clients arise. For the Connected Consumer system, 
which is shared between all physical locations, this means a peak in recommendation 
requests that must be served in a timely manner to avoid further delays in customer service. 
To support the higher throughput required, the application deployment needs to change. For 
this use case, the Dynamic Orchestrator workflow is as follows: 

1. The Triple Monitoring component informs the Interpreter about the current metrics, 
with the increase in the rate of incoming events received by the system.  

2. The Interpreter translates this into a RL state and sends a message to the Dynamic 
Orchestrator.  

3. The Dynamic Orchestrator observes the change in the state and decides the best 
change in the deployment to be performed. 

4. The Dynamic Orchestrator sends a message to the ADS-Ranker that will perform the 
change.  

5. The Triple Monitoring informs the Interpreter about the new metrics status and the 
Interpreter updates the RL state and calculates the reward generated by the change 
in the deployment; this reward will be positive if the change improved the throughput 
of the system and negative otherwise.  

6. The interpreter sends the new state and the reward to the Dynamic Orchestrator.  

7. The Dynamic Orchestrator observes the reward and the new state of the system.  

8. The Dynamic Orchestrator updates its internal action-state ranking according to the 
received reward.   
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9. If the state has come back to normal, i.e. the application throughput keeps up with 
the incoming events rate, the Dynamic Orchestrator will take no further action until 
the state is changed again. 

It is important to note that the Dynamic Orchestrator will manage competing workloads of 
different applications by taking into account the resource availability in its decisions, this 
means that, for example, if the memory assigned to an application is already at its maximal 
value, then the Dynamic Orchestrator will not consider increasing the memory size as an 
action. 

6.5. Experimental Plan 

To evaluate the performance of the Dynamic Orchestrator, we plan to test its behaviour 
throughout the use case described above in section 6.4. The tests will be performed 
simulating a single as well as multiple workloads. Specifically, we will evaluate the 
performance by monitoring the following aspects: 

• Time to adapt: Dynamic Orchestrator should detect the need to change and decide 
the change rapidly, to provide the highest SLO/Requirements satisfaction rate possible 

o KPIs: SLO/Requirements satisfaction rate, time measured from when 
SLO/Requirement violation started to when decision to change deployment is 
taken. 

• Change effect: the change decided by the Dynamic Orchestrator should improve the 
current situation and, if possible, satisfy all the SLO/Requirements 

o KPIs: SLO/Requirements satisfaction rate, SLO/Requirements metrics before 
and after change was executed. 

• Time to learn to adapt: Reinforcement Learning starts choosing actions randomly until 
it properly learns about its environment and how the actions taken affect it, in this 
setting it is very important to observe how long does it take for the algorithm to 
acquire enough knowledge to be able to adapt properly. 

o KPIs: time (probably in RL steps) from boot up to when SLO/Requirements 
satisfaction becomes stable  

6.6. Next Steps 

In the future, we plan to further develop the logic for the Dynamic Orchestrator. In particular, 
there are two challenging aspects: 

• Several metrics can be used to define the state. The states space must be limited in 
order to ensure the RL agent learns about its environment in few steps so the 
application can offer a high requirements and SLO satisfaction rate since its initiated. 
The first step to do this is to discretize the metric values properly, creating meaningful 
bins in which the metric values will be accommodated. The second and maybe even 
more important step, is to limit the number of metrics to be taken into account, if 
properly chosen, the right action for every state will be quickly learnt, otherwise, the 
RL agent will not have enough information to take decisions or will take too long to 
learn what to do in each state. 
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• Several deployment changes can be performed by the Dynamic Orchestrator and in 
different way. Each deployment change will be an action and in the same way that a 
large states space can negatively affect the learning, a large actions state will 
compromise the reinforcement learning logic performance. To address this problem, 
it is important to define what actions are most meaningful for each deployment and 
in which way they should be implemented, i.e. by giving a determined value for a 
parameter or by just asking the ADS-ranker to increase/decrease it. In addition, the 
available actions will vary according to the characteristics of the deployment, e.g. is 
the deployment in a private or public cloud? 

In addition, we plan to do more tests to evaluate the Dynamic Orchestrator’s performance 
and robustness to different runtime situations and with different applications.  
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7. ADS Ranking & Deploy 

The role of the ranking and deployment module of Big Data Stack is to decide how to deploy 
the user’s application and then operationalize that deployment via a container orchestration 
platform (e.g. Kubernetes). Ranking and deployment is part of the application deployment 
back-bone that enables a user to get their application running on a hardware cluster. Prior to 
ranking and deployment, the user will have defined in a conceptual manner what their 
application is comprised of and how the different services within that application interact. 
This conceptual definition will have been expanded into multiple candidate deployment 
pattern (CDP) playbooks representing different ways that the application/services can be 
mapped onto compute resources for deployment. Finally, these CDP Playbooks will have been 
benchmarked, providing estimated resource usage and quality of service information for 
each. Ranking and deployment takes these CDP Playbooks and associated benchmarking 
information as input. 

As its name suggests, ranking and deployment is split into two distinct components, namely: 
ADS (Application and Data Services) Ranking and ADS (Application and Data Services) 
Deployment. ADS Ranking is responsible for taking the different CDP Playbooks and 
associated benchmarking information, and deciding which CDP Playbook is the most suitable 
based on the user requirements and preferences. This has two uses within BigDataStack, 
namely:  to determine what compute resources to request for a user’s application when first 
deploying it (see the BigDataStack operations phase Step 1); and to re-estimate compute 
resource needs in cases where a current deployment is predicted to miss one or more Service-
Level Objectives (see the BigDataStack operations phase Step 7). Meanwhile, ADS 
Deployment is responsible for taking the selected CDP Playbook and using the configuration 
information contained within, to operationalize deployment of the user’s application on the 
cloud infrastructure (see the BigDataStack operations phase Step 4). 

7.1. Requirements specification 

To facilitate the understanding of the design as well as the challenges addressed by this 
component, the requirements related to this component have been brought from D2.2 and 
literally included into this section. Please note the following requirement tables are compiled 
together with the rest of requirements of BigDataStack in D2.2, and that they are included in 
here for the reader’s convenience. 

This section contains the requirements for both the ADS Ranking and ADS Deployment 
components. For reference, ADS Ranking requirements are denoted REQ-ADSR-XX, while ADS 
Deployment requirements are denoted REQ-ADSD-XX. 

 Id Level of detail Type Actor Priority 

REQ-ADSR-01 System FUNC Application 
Dimensioning 
Workbench 

MAN 

Name Ingest Candidate Deployment Playbooks and Benchmarking Information 

Description The Application Dimensioning Workbench sends a series of candidate 
deployment patterns (CDP) playbooks and benchmarking information to 
the ADS Ranking component. ADS Ranking needs to collect all these 
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patterns for subsequent scoring/ranking based on the user requirements 
and preferences.  

Additional 
Information 

Ingestion occurs via a common publisher/subscriber platform (RabbitMQ).  

Table 15 - Ingest Candidate Deployment Playbooks and Benchmarking Information (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-ADSR-02 System FUNC Developer MAN 

Name Deployment Suitability Feature Extraction 

Description Once a series of candidate deployment pattern playbooks and associated 
benchmarking information has been received, the next step is to determine 
how each pattern is predicted to perform based on the benchmarking 
information. In effect, this involves defining a series of functions that relate 
individual or groups of user requirements to the predicted performances 
produced by benchmarking. The output of this step is a vector 
representation for each CDP playbook, representing how that playbook is 
predicted to fair under different user requirements.  

Additional 
Information 

Features produced here are dependent on the capabilities of the 
benchmarking system and the amount of information the user provides in 
terms of requirements and preferences. 

Table 16 - Deployment Suitability Feature Extraction (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-ADSR-03 System FUNC Developer MAN 

Name CDP Playbook Scoring (Heuristic) 

Description Given a vector representation for a CDP Playbook, we next need to map 
this vector into a single score, representing how suitable that playbook will 
be overall (such that we can compare different CDP Playbooks). This 
involves combining the different elements within the vector (that each 
represent some aspect of pattern suitability, such as cost, or predicted 
compute wastage). The first version of this will use a hand-tuned linear 
combination.  

Additional 
Information 

N/A 

Table 17 - CDP Playbook Scoring (Heuristic) (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-ADSR-04 System FUNC Developer DES 

Name CDP Playbook Scoring (Supervised) 

Description Given a vector representation for a CDP Playbook, we next need to map this 
vector into a single score, representing how suitable that playbook will be 
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overall (such that we can compare different CDP Playbooks). This involves 
combining the different elements within the vector (that each represent 
some aspect of pattern suitability, such as cost, or predicted compute 
wastage). The second version of this will learn how to combine the elements 
based on logging information from past deployments. Models may be non-
linear in nature. 

Additional 
Information 

Depends on REQ-ADSR-06. 

Table 18 - CDP Playbook Scoring (Supervised) (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-ADSR-05 System FUNC Developer MAN 

Name CDP Playbook Selection 

Description Once all candidate deployment patterns have been scored, the final step is 
to select one of those patterns to pass to ADS Deployment. In many cases 
this will simply involve selecting the highest scoring pattern. However, the 
user may have the option to select an alternative configuration at this stage. 

Additional 
Information 

N/A 

Table 19 - CDP Playbook Selection (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-ADSR-06 System FUNC Developer DES 

Name Supervised Model Training 

Description To support REQ-ADSR-04, a supervised scoring model is needed. To react to 
changes in the deployment environment over time, this model needs to be 
frequently updated based on new information from current deployments. 
This model needs to be trained based on logging data being collected by the 
Triple Monitoring Framework. 

Additional 
Information 

Requires logging information produced by the Triple Monitoring Framework 
and stored in the Central Decision Tracker. 

Table 20 - Supervised Model Training (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-ADSR-07 System FUNC Developer MAN 

Name CDP Playbook Re-Scoring 

Description It is envisaged that in (rare) scenarios, an ongoing application deployment 
will fail to meet the user’s quality of service requirements. This might occur 
due to assumptions on data input volumes being violated for instance. In 
this case, we may not be able to solve this issue without fully redeploying 
the user application with different resources. To support such re-
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deployment activities, ADS Ranking supports a re-scoring function, where a 
previous set of CDP playbooks for a user’s application can be re-scored 
based on updated preferences provided by the Big Data Stack Orchestrator, 
as well as live data about how the previous deployment performed (and 
failed).   

Additional 
Information 

N/A 

Table 21 - CDP Playbook Re-Scoring (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-ADSD-01 Stakeholder FUNC Application 
developers 

MAN 

Name Performance Measurability 

Description Each environment should be measurable according to a set of 
characteristics, that is, Key Performance Indicators (KPIs). 

Additional 
Information 

The KPIs considered must include: 

• vCPUs 

• Memory 

Table 22 – Performance Measurability (stakeholder requirement). 

 Id Level of detail Type Actor Priority 

REQ-ADSD-02 Stakeholder FUNC System MAN 

Name Standards-based Playbook 

Description The description of the environments and deployments (i.e., playbooks) will 
follow a standard specification language 

Additional 
Information 

N/A 

Table 23 - Standards-based Playbook (stakeholder requirement). 

 Id Level of detail Type Actor Priority 

REQ-ADSD-03 System FUNC System MAN 

Name Standard deployment information 

Description When communicating with other components, as described in Section 7.2, 
these components will use the playbook standard defined in REQ-RD-02. 

Additional 
Information 

N/A 

Table 24 - Standard deployment information (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-ADSD-04 System FUNC System MAN 
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Name Application Scoring System 

Description The ranking system evaluates each environment’s deployment, which keeps 
track of the most suitable configuration for each application. When trying a 
deployment configuration for a new application, this ranking will be used to 
select the most suitable one. 

Additional 
Information 

The evaluation will be done following the measurements defined in REQ-
RD-01. 

Table 25 – Application Scoring System (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-ADSD-05 System FUNC Cluster 
management 
component 

MAN 

Name Compatibility with Kubernetes 

Description Since the technology used to run and orchestrate the applications is based 
in Kubernetes (OKD8). Thus, the ADS-Deployment component is required to 
be compatible with Kubernetes. 

Additional 
Information 

The ADS-Deploy component should translate from the playbook standard 
defined in REQ-RD-01 into Kubernetes primitives. 

Table 26 - Compatibility with Kubernetes (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-ADSD-06 System FUNC  MAN 

Name Synchronous communication 

Description The communication with and within both components should be done 
through an API REST. 

Additional 
Information 

N/A 

Table 27 - Synchronous Communication (system requirement). 

7.2. Design 

In this section we summarize the main architectural design for the Ranking and Deployment 
module. More precisely, we first introduce the two components and how they interact with 
other components around them in the larger Big Data Stack platform, and secondly, we define 
the internal activity flow for ADS Ranking and ADS Deployment. 

The high-level architecture of the Ranking and Deployment module is illustrated in Figure 15. 
The two main components within the Ranking and Deployment module are coloured in green, 
while other components that the module depends on or are dependent upon the module are 
coloured in blue. When an application is sent for deployment, it first passes through the 
Application Dimensioning Workbench for CDP (Candidate Deployment Pattern) Playbook 

                                                 
8 OKD - https://www.okd.io/ 
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creation and benchmarking. The resultant CDP Playbooks and benchmarking information are 
sent to ADS Ranking via an interface (First-Time Ranking Interface).  

 

Figure 15 – Ranking and Deployment Module Architecture. 

ADS Ranking uses information within each CDP Playbook along with historical data obtained 
from the Central Decision Tracker to score and then select one CDP Playbook for deployment. 
This is CDP Playbook is sent via the Deployment Interface to ADS Deployment, where it is used 
to request resources for the user’s application, using the Cluster Management component 
(See Section 5). This sequence of actions is what we refer to as ‘first-time deployment’ and 
represents the case where a user comes with a new application to deploy. It is also worth 
noting that a separate component, referred to as the Dynamic Orchestrator (not to be 
confused with the container orchestration platform) monitors first-time deployment via the 
different interfaces, as it is responsible for triggering actions based on deployment state (e.g. 
if we cannot find a suitable deployment). Additionally, due to REQ-ADSR-07, the Dynamic 
Orchestrator may request the re-scoring of CDP Playbooks directly in the case where 
application failure post-deployment is detected. This is achieved via a bespoke Re-Ranking 
interface provided by the ADS Ranking component. 

The ADS Ranking component has two main ‘modes’ of operation, which directly relate to the 
first-time deployment and re-scoring actions discussed above. 

Figure 16 provides an overview of the interactions involved in these two operation modes. 
Under the first-time deployment action, the Application Dimensioning Workbench sends CDP 
Playbooks and benchmarking information to ADS Ranking. ADS Ranking then ingests those 
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CDP Playbooks (REQ-ADSR-01), reformatting them into a form that can be easily processed. 
Next, each CDP Playbook is transformed into a feature vector by CDP Playbook Feature 
Extraction (see REQ-ADSR-02). These features represent the predicted performance of the 
user’s application under expected average and peak load given the suggested compute 
resources.9 Once a CDP Playbook has been vectorised, it is next subject to scoring based on 
the user’s requirements and preferences. The scoring function may be unsupervised (REQ-
ADSR-03) or may use a machine learned model trained on previous application deployments 
(REQ-ADSR-04). Finally, the scored CDP Playbooks are subject to selection, where the most 
suitable one will be picked as the template for application deployment (REQ-ADSR-05). The 
selected CDP Playbook is then passed to ADS Deployment to operationalize the physical 
deployment.  

 

Figure 16 – ADS Ranking Interaction Diagram 

                                                 
9 Note it is anticipated that these predicted performances will be subject to some degree of error. For example, 
benchmarking statistics (over a small data sample) may not reflect true deployment performance. Moreover, in 
opaque cluster scenarios (see Section 3.2), services from other users may share hardware with our user’s 
application, potentially causing performance degradation that could not be predicted during benchmarking. It 
is expected that such error may be handled by including compute resource ‘head-room’ when estimating 
resources, and if that is not sufficient then corrections will be possible post-deployment via run-time adaptations 
by the Dynamic Orchestrator. 
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The second mode of operation is re-ranking. This is based on requirement REQ-ADSR-07, i.e. 
in cases where a prior deployment has been deemed as no longer suitable, we need to select 
a new CDP Playbook. In this mode, the Dynamic Orchestrator triggers the re-ranking process, 
providing updated application preferences based on the reason-of-failure for the prior 
deployment. ADS Ranking will retrieve the full set of CDP Playbooks for the user’s application 
(from the Central Decision Store) and then perform scoring and selection in a similar manner 
to the first-time deployment mode. 
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Figure 17 – Interaction diagram of the ADS Deployment and Ranking design 

Figure 17 shows the interaction between ADS-Deploy and the other components in the Big 
Data Stack platform. The request for a new deployment by the ADS-Ranking component starts 
a new thread to process a CDP Playbook. The ADS Ranking component communicates this 
deployment request to ADS Deployment, which interprets the CDP Playbook and proceeds 
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with the deployment of the application. There are three possible outcomes to this 
deployment process: 

1. The requested compute resources are available: In this case, ADS deployment sets up 
the environment, deploying and starting the user service. Once the environment has 
been fully set-up, the ADS Deployment component communicates this deployment 
to the Dynamic Orchestrator. 

2. The cluster has the available compute resources but some of those resources are 
busy: In this case, the environment allocation will be scheduled for when the cluster 
has sufficient free compute resources. ADS Deployment component will 
communicate the scheduled state of the user application to the Dynamic 
Orchestrator, which can opt to either leave the application to wait for resources to 
become available or otherwise cancel the deployment process (e.g. at the behest of 
the user).  

3. The cluster does not have sufficient available resources: In rare scenarios, it may be 
the case where the estimated compute resources needed to run the user’s 
application are greater than can be provided by the cluster. This might happen if using 
a small dedicated cluster for instance, or in cases where a resource usage cap is in 
place. In this case, deployment is cancelled, and ADS Deployment component will 
communicate this to the Dynamic Orchestrator, which can alert the user. 

Once a user’s application has reached a running state (i.e. the resources were immediately 
available or became available while the application was scheduled), the Dynamic Orchestrator 
calls the Triple Monitoring Engine and QoS Evaluation (TME), described in Section 8, for 
monitoring of the deployment. The TME evaluates periodically if the deployment agrees with 
an agreed minimum QoS between the system and the user. Every time that the minimum QoS 
is not respected, this data is communicated to the Dynamic Orchestrator. This may trigger re-
scoring by ADS Ranking (among other possible run-time adaptations). In this case ADS ranking 
proceeds to re-evaluate the list of available CDP Playbooks, based on to their performance, 
ultimately leading to the user’s application being re-deployed with a new set of compute 
resources.  

7.3. Early Prototype 

At M11 the first Tier 0 implementation of the ADS Ranking component has been developed 
and tested. This version provides CDP Playbook ingestion (REQ-ADSR-01), a basic level10 of 
Deployment Suitability Feature Extraction (REQ-ADSR-02), CDP Playbook Scoring (Heuristic) 
(REQ-ADSR-03). This component is deployable via an Apache Spark cluster. At M11 
development of the ADS Deployment component has not started. 

                                                 
10 Subsequent Tiers will include more advanced feature extraction capabilities as new benchmarking data 
becomes available from advances made from the development of the application dimensioning workbench. 
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Figure 18 – ADS Test System, Playbook View. 

In addition, to facilitate the testing of the Ranking and Deployment functionality, a test system 
was created. This test system was developed to provide a way for BigDataStack developers to 
analyse the inner workings of application deployment, in general, and the ADS Ranking 
functionality, in particular. This is needed in part because the Ranking and Deployment 
functionalities are largely invisible to the BigDataStack users, and hence a separate test 
system is needed to observe its function. 

More precisely, the test system is designed to isolate the Ranking and Deployment 
functionality from the rest of the BigDataStack platform such that it can be tested separately. 
It is designed to simulate and allow the user to customise the output of the Application 
Dimensioning Workbench, such that ADS Ranking can be tested under different experimental 
scenarios. The test system is comprised of four main screens. First, illustrated in Figure 18At 
M11 the first Tier 0 implementation of the ADS Ranking component has been developed and 
tested. This version provides CDP Playbook ingestion (REQ-ADSR-01), a basic level of 
Deployment Suitability Feature Extraction (REQ-ADSR-02), CDP Playbook Scoring (Heuristic) 
(REQ-ADSR-03). This component is deployable via an Apache Spark cluster. At M11 
development of the ADS Deployment component has not started. 
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, is the Playbook view. This allows the user to load pre-defined application Playbooks, which 
can then be customised (using the controls on in the right pane) to create a test scenario. The 
second view is the simulated dimensioning view, which is responsible for configuring the 
output of the application benchmarking (more information on this can be found in deliverable 
5.1). This is important as benchmarking will be imperfect, hence we need a means to model 
benchmarking accuracy, as that will in turn impact the performance downstream in ADS 
Ranking. The third view is the ADS progress view. This view is simply to allow the tester to 
monitor the time taken for dimensioning, ranking and deployment. 

Figure 19 – ADS Test System, Ranking View. 
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The fourth view is the ranking view, illustrated in Figure 19. The ranking view provides 
statistical information about how each CDP Playbook was scored in terms of suitability with 
respect to the user’s requirements and preferences. For example, this may include a 
comparison of how the expected cost of the deployment relates to the amount the user is 
willing to pay; or comparing the expected CPU usage of the user’s services against the 
hardware being requested. This information allows the developers of the ADS Ranking 
component better understand where deployments may fail, and hence how to improve the 
CDP Playbook scoring algorithm (REQ-ADSR-03 and REQ-ADSR-04). 

7.4. Use Case Mapping 

ADS Ranking and ADS Deployment components are not explicitly linked to any particular use-
case, as it forms part of the underlying pipeline for application deployment, which is required 
for all use-cases in the project. Indeed, the identification of suitable CDP Playbooks for a user’s 
application is critical, such that sufficient resources to support that application are identified 
and requested during deployment. For example, for the ATOS-WORDLINE-EROSKI scenarios 
(SCE-CC-01 and SCE-CC-02), large amounts of processing capacity is needed for learning 
recommendation models for the connected consumer. It is the role of ADS Ranking to identify 
the compute resources (represented by a CDP Playbook) that will enable this learning in a fast 
and efficient manner. Meanwhile, the ADS Deploy component is responsible for the 
requesting resources for required services on the target cluster. As such, ADS Ranking and 
ADS Deployment can be considered an implicit requirement for all user scenarios (SCE-RSM-
01, SCE-RSM-01, SCE-CC-01, SCE-CC-02, SCE-IMB-01 and SCE-IMB-02). 

7.5. Experimental Plan 

The development of ADS Ranking is a primarily research-orientated activity, as how to 
effectively score user application deployments based on benchmarking information, 
hardware availability and user requirements/preferences is an open problem. Meanwhile, the 
development of ADS Deployment is primarily an engineering activity, building on top of 
existing software deployment platforms such as Kubernetes and OpenShift. As such, we focus 
primarily on the experimental evaluation of ADS Ranking in this section. In Section ¡Error! No 
se encuentra el origen de la referencia. we provide a short summary highlighting the 
challenges of identifying deployment configurations for a user’s application. Section 0 
introduces our proposal for adapting state-of-the-art learning to rank approaches for this 
task. Finally, in Section 0 we discuss how we plan to evaluate the effectiveness of ADS Ranking. 

7.5.1. Background and Related Work 

Currently, companies that wish to deploy large-scale applications onto cloud infrastructure 
tend to follow one or two strategies. First, if they are developing/have developed their 
application in-house and have the technical expertise, the developers or other IT experts 
within the company will be responsible for identifying suitable hardware for that application, 
as well as subsequent deployment and maintenance on the cloud. On the other hand, if local 
expertise is not available, companies may make use of external “cloud consultants” (e.g. 
https://cloudspectator.com/) to handle the benchmarking and optimization of their 
workloads for a fee. BigDataStack aims to innovate in this space by providing the 
benchmarking and optimization of cloud deployments automatically, eliminating the need for 

https://cloudspectator.com/
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experts to manually test and monitor user applications. ADS Ranking forms a critical link in 
achieving this, as it provides the means to automatically relate benchmarking information 
about an application to the user’s requirements and preferences, which previously required 
expert knowledge. 

To our knowledge, there has been no prior works that examine how to tackle automated 
identification of suitable cloud deployment configurations for an arbitrary user application to-
date. However, there has been prior research into the benchmarking tools previously 
employed by the experts that that provide valuable insights into how to tackle this problem. 
For example, CloudSuite [7] and DCBench [15] are benchmark suites for scale-out cloud 
services. What is important to learn from these tools is how each application defines different 
deployment targets and constraints. For example, for a video streaming service, the degree 
of video buffering that the user sees is what matters, while for a Web host, low response 
latency is critical. Moreover, the targets and constraints of an application may change based 
on the user scenario. For instance, for an application, training a complex machine learned 
model [14], the user may only care about time-to-completion if the model is needed to be 
ready for the next day’s processes. Meanwhile, in less time critical settings, minimizing cost 
may be the main requirement [8]. ADS Ranking aims to provide a solution to identifying 
suitable compute resources for a user’s application that will satisfy such goals automatically, 
where these goals are specified by the user (as requirements and preferences).  

However, this is challenging for two reasons. First, given the diverse and continually 
expanding number of quality of service targets/constraints that a user might desire, modelling 
each individually is impractical, necessitating a more general solution. Second, modern 
application workloads are complex in that they can span multiple inter-dependant functions 
or services with very different performance profiles. This requires model that can capture the 
interactions between those functions/services under different loading scenarios, to avoid 
application processing bottlenecks derived from a single function or service receiving 
insufficient resources.    

Learning to rank techniques are machine learned algorithms, which take as input a set of 
features describing items, and learns how to effectively combine of those features to create 
a score for each of those items indicating how related they are to a separate feature vector 
(commonly referred to as the ‘query’) [10]. The most common application of learning to rank 
techniques are Web search engines, where the items to be scored are Web documents and 
the separate feature vector is the user’s search query (hence why we refer to this separate 
feature vector as the query, although it is important to note that the separate feature vector 
can be used to represent anything). The goal of learning to rank is to find the feature 
combination (referred to as a model) which results in the most effective ranking for a set of 
items given a query. In the next section we summarize how we propose to adapt learning to 
rank techniques to tackle the challenges of identifying the most effective CDP Playbook for a 
user’s application. 

7.5.2. Learning to Rank CDP Playbooks 

To tackle the challenges of identifying the most effective deployment configuration for a 
user’s application, we propose to extend current state-of-the-art learning to rank approaches. 
The core idea underpinning this is that CDP Playbooks can be seen as our items to rank, where 
we can represent each CDP Playbook by aggregating: 1) information provided by the user 
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about their application/services; 2) the suggested compute resources contained within the 
CDP Playbook; and 3) the benchmarking data obtained from the application dimensioning 
workbench. Our ‘query’ is then the user’s defined requirements and preferences. The goal of 
learning to rank in this case is to learn a model that effectively combines all the aggregated 
CDP Playbook information into a single score that represents how suitable that CDP Playbook 
is based on the user’s requirements and preferences. In effect, this model aims to learn how 
value the features of an CDP given different sets of requirements and preferences. This model 
can be used to score all CDP Playbooks generated for the user application, where the highest 
scoring is likely the best to use to deploy the user’s application. 

However, adapting learning to rank techniques into this different domain brings with it three 
additional challenges. First, we need to define an effective series of features using which we 
can represent each CDP Playbook. As noted above, to achieve this, we have three potential 
sources of evidence, in the form of application/service information provided by the user, 
compute resource information contained in the CDP Playbook itself and benchmarking 
statistics provided by the application dimensioning workbench. This CDP Playbook evidence 
needs to be aggregated and normalized to form meaningful features. Second, as noted in our 
discussion of the challenges of identifying hardware configurations that meet deployment 
targets and constraints, there are a large and diverse set of user requirements and 
preferences. Hence, we need an effective approach to map these requirements and 
preferences into a generic feature vector (our ‘query’). Finally, to learn an effective learning 
to rank model, a large training dataset is needed. As no-one has attempted to use machine 
learning approaches for this task to-date; such a training dataset does not exist. As such, we 
will need to develop such a dataset during the project. 

These are the three main research challenges that will be investigated in Y2 of the 
BigDataStack project within Task 3.3. 

7.5.3. Evaluation Methodology and Metrics 

The ADS Ranking and ADS Deployment components are planned to be initially tested as part 
of the evaluation scenarios planned at M12 (Inference without Data Access, see Section 
4.1.1¡Error! No se encuentra el origen de la referencia.) and M15 (Inference with Data 
Access, see Section 4.1.2). Under these evaluation scenarios a single user application will be 
deployed by the BigDataStack platform and instrumented under variable load conditions. 
These initial tests will be performed in a dedicated cloud scenario, without significant 
competition for cluster resources.  Note that we anticipate that this testing will include only 
unsupervised versions ADS Ranking, as the core research needed to facilitate future learning 
to rank based versions will be being performed in parallel.   

- Evaluation Setting: For each evaluation scenario, an application Playbook will have 
been created by an up-stream process that describes the application services that are 
to be deployed. This Playbook will be ingested by the Pattern Generation component, 
which will produce a series of candidate deployment pattern playbooks (CDP 
Playbooks). Each playbook will have been subject to benchmarking by the application 
dimensioning workbench. Each CDP Playbook will be processed by ADS Ranking, 
resulting in the generation of a suitability score for each. The effectiveness of ADS 
Ranking will be evaluated based on how many of the top-scored CDP Playbooks would 
have been suitable based on the user’s requirements. To create a ground truth for 
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whether each CDP Playbook was in fact suitable, the user’s application will be 
physically deployed using that CDP Playbook as its deployment configuration. A CDP 
Playbook is considered suitable if it passes all of the user’s requirements during its 
run-time. The ground truth may additionally include multiple suitability ‘grades’ based 
on to what extent the CDP Playbook also met the user’s preferences. 

- Metrics: To evaluate effectiveness of a ranking of CDP Playbooks deployed by the ADS 
Ranking component, we will use standard ranking metrics from the information 
retrieval literature. In particular, we will report: 

• Precision@1: This evaluates whether the top ranked CDP was suitable for the 
user’s application 

• Mean Average Precision (MAP): Average precision (at a particular rank) is the 
proportion of suitable CDP Playbooks down to that rank. MAP is average precision 
calculated at the maximum rank over multiple application deployments. [13] 

• NDCG@5: Discounted Cumulative Gain (DCG) is a measure the usefulness, or gain, 
of an item based on its position in a ranking. Total gain is accumulated starting 
from the top of the result and moving downwards to a set rank (@N). Gain of each 
result is discounted at lower ranks and can incorporate (suitability) grades. NDCG 
is DCG normalized across (in our case) different application deployments to 
account for some deployments being easier to find suitable patterns for than 
others. [9] 

7.6. Next Steps 

It is currently envisaged that there will be three further releases of the ADS Ranking 
component and two releases of the ADS Deployment component during BigDataStack, 
integrating more advanced functionality: 

- ADS Ranking 

o Tier 1: This second version of the ADS Ranking component will integrate 
directly with the first iteration of the application dimensioning workbench to 
obtain benchmarking features. This version will also include the first 
implementation of the re-ranking functionality (REQ-ADSR-07). 

o Tier 2: This version will transition from using current heuristic scoring of CDP 
Patterns to the first version of our proposed learning to rank approach. 

o Tier 3: This version will include our second iteration of the learning to rank 
approach with support for reinforcement learning from live data collected by 
the Triple Monitoring Framework. 

- ADS Deploy 

o Tier 1: This Version of the ADS Deploy component will see to integrate with the 
existing technologies (REQ-ADSD-05) for containerization and provide a 
working prototype, able to deploy an environment from a given Playbook CDP. 

o Tier 2: This version of the ADS Deploy will implement all the synchronization 
functionalities (REQ-ADSD-06) needed for the interaction with the component. 
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This implies that it will be integrated with the ADS Ranking and Dynamic 
Orchestrator components. 
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8. Triple Monitoring & QoS Evaluation 

The triple monitoring component collects and stores several metrics on performance at an 
application, data service and resource cluster level. These metrics are used to dynamically 
adapt the environment and ensure the best QoS (Quality of Service) to the user. When a user 
requests a service from BigDataStack, a minimum QoS is agreed between the user and the 
system. At runtime, certain metrics or Key Performance Indicators (KPI) are collected by the 
Triple Monitoring Engine and evaluated against the agreed Service-Level Objectives (SLOs) by 
the QoS Evaluator. 

8.1. Requirements specification 

To facilitate the understanding of the design as well as the challenges addressed by this 
component, the requirements related to this component have been brought from D2.2 and 
literally included into this section. Please note the following requirement tables are compiled 
together with the rest of requirements of BigDataStack in D2.2, and that they are included in 
here for the reader’s convenience. 

 Id Level of detail Type Actor Priority 

REQ-TM-01 Stakeholder FUNC Developer MAN 

Name Regular recording of QoS metrics 

Description When a user’s application is deployed, the Triple Monitoring Framework 
monitors that application, tracking statistical information about its 
operation and associated QoS data, including network, data storage, 
virtualization layers, etc.  

This data is needed to support the learning of ranking models by ADS-
Ranking service (part of Application and Service Deployment; see REQ-
ADSR-03) and regularly saved in a centralised data store for later access. 

Additional 
Information 

Input:  
- Candidate Deployment Pattern (application identifier from this is 

the primary key for saving monitoring data for an application)  
Output:  

- Deployment QoS Snapshot (monitoring/QoS data, every few mins) 
Service Dependencies:  

- Centralised Data Store (Storage Service) 
-  

This is implemented over Prometheus11 as the monitoring collector. 

Table 28 - Regular recording of deployment QoS information (stakeholder requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-02 Stakeholder FUNC Developer MAN 

Name QoS violation alert 

                                                 
11 Prometheus. https://prometheus.io/ 

https://prometheus.io/
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Description If the system does not respect the agreed QoS, an alert is raised. 

Additional 
Information 

This alert is used internally to evaluate the performance of an 
environment, relating to REQ-RD-004. 

Table 29 - QoS violation notification (stakeholder requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-03 Stakeholder FUNC Developer DES 

Name QoS violation monitoring 

Description QoS violations are also monitored and shown to the user/admin. 

Additional 
Information 

N/A 

Table 30 - QoS violation monitoring (stakeholder requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-04 System FUNC Developer MAN 

Name Metrics pusher  

Description The metric pusher retrieves KPI data, clean them and ingest them into the 
monitoring collector (Prometheus). 

Additional 
Information 

The metrics pusher is used when the exporter approach is impossible to 
apply. This solution will be very useful for getting application specific 
metrics (it’s not approved yet). 

Table 31 - Metrics pusher (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-05 System FUNC Developer DES 

Name API REST for accessing the collected monitoring metrics 

Description The metrics are accessible through an API REST. 

Additional 
Information 

This component translates client’s requests to Prometheus request 
compatible. Grafana12 will be used for visualization. 

Table 32 - Monitoring metrics API REST (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-06 Software FUNC Developer MAN 

Name Pub/Sub Mechanism for Metrics 

                                                 
12 Grafana. https://grafana.com/ 

https://grafana.com/
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Description This component queries the metrics repository periodically and publishes 
this information through a publisher/subscriber mechanism. Each client 
sends subscription requests to the system. 

Additional 
Information 

The monitoring metrics getter is implemented on RabbitMQ13  

Table 33 - Monitoring metrics getter (software requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-07 Software FUNC Developer DES 

Name Spark compatible 

Description The triple monitoring engine monitors the performance of Apache Spark14, 
which is used in the BigDataStack project as an analytics engine for Big 
Data, thus needs to be compatible with this technology. 

Additional 
Information 

Monitoring Spark is done using Spark measure project, which can be 
embedded in spark application allowing the collection of some metrics after 
each SQL execution. Those metrics are sent to push gateway to be exported 
to Prometheus. 

Table 34 - Spark compatibility (software requirement). 

 Id  Level of detail Type Actor Priority 

REQ-TM-08 Software FUNC Developer DES 

Name LeanXcale compatibility 

Description LeanXcale database15 already uses Prometheus for its monitoring 
subsystem. However, the integration is relied on static deployments. Thus, 
it should be extended to consider re-deployments in cases when an 
elasticity action takes places which leads to a scale in/out of the resources. 
In these scenarios, LeanXcale should reconfigure its integration with the 
existing Prometheus deployment on the run-time and provide monitoring 
information for the new nodes 

Additional 
Information 

N/A 

Table 35 - LeanXcale compatibility (software requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-09 Software FUNC Developer DES 

Name OKD compatibility 

                                                 
13 RabbitMQ. https://www.rabbitmq.com/ 
14 Apache Spark. https://spark.apache.org/ 
15 LeanXcale. https://www.leanxcale.com/ 

 

https://www.rabbitmq.com/
https://spark.apache.org/
https://www.leanxcale.com/
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Description The Triple Monitoring engine monitors the performance of Openshift 
OKD16, which is the baseline technology used in the orchestration of 
containers. Therefore, the triple monitoring engine needs to be compatible 
with this technology. 

Additional 
Information 

N/A 

Table 36 - OKD compatibility (software requirement). 

 

 Id  Level of detail Type Actor Priority 

REQ-TM-10 Software FUNC Developer DES 

Name CEP compatibility 

Description The triple monitoring engine monitors the performance of CEP, which is 
used in the BigDataStack project as a streaming engine for processing data 
in real-time. Therefore, the triple monitoring engine needs to be compatible 
with this technology. 

Additional 
Information 

The CEP exposes several monitoring metrics that are exported to 
Prometheus. 

Table 37 - CEP compatibility (software requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-11 Software FUNC Developer DES 

Name Minio compatibility 

Description The triple monitoring engine monitors the performance of Minio17, which is 
used for object storage in the system. Therefore, the triple monitoring 
engine needs to be compatible with this technology. 

Additional 
Information 

N/A 

Table 38 - Minio compatibility (software requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-12 Software FUNC Developer DES 

Name OpenStack Networking Services compatibility 

Description The Triple Monitoring engine monitors the performance of the internal 
network connecting the different containers inside an application. 
BigDataStack uses the OpenStack networking services for managing this 
network communications, so the triple monitoring engine needs to be 
compatible with this technology. 

                                                 
16 Openshift OKD (Origin Kubernetes Distribution). https://www.okd.io/ 
17 Minio Private Cloud Storage- https://www.minio.io/ 

https://www.okd.io/
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Additional 
Information 

N/A 

Table 39 - OpenStack Networking Services compatibility (software requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-13 Software FUNC Developer MAN 

Name Persistently store the monitoring metrics 

Description The triple monitoring engine should use a database for persistently storing 
monitoring metrics and is connected to Prometheus by http. 

Additional 
Information 

This database is based on influxDB24. 

Table 40 - Monitoring database (software requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-14 Software FUNC Developer ENH 

Name Spark Monitoring Pushgateway 

Description This component is used to gather metrics from Spark and ingest them into 
the metrics collector. 

Additional 
Information 

The connection between this component and the applications use http. 

Table 41 - Monitoring Pushgateway (software requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-16 Software FUNC Developer ENH 

Name Metrics visualization 

Description The metrics must be shown to the end-user via a graphical interface. 
Grafana is used for metrics’ visualization. 

Additional 
Information 

Grafana18 is configured for receiving metrics from two sources 
(Prometheus, InfluxDB).  

Table 42 - Metrics visualization (software requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-17 System FUNC Dynamic 
Orchestrator 

ENH 

Name Asynchronous rich notification of SLA violations 

Description SLA violations should be notified by means of a publish/subscribe 
mechanism, together with the metrics (KPIs) upon which the SLA imposes 
restrictions.  

                                                 
18 Grafana - https://grafana.com/ 
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Additional 
Information 

The main consumer of the SLA violations notifications is the Dynamic 
Orchestrator. 

Table 43 - Metrics visualization (software requirement). 

8.2. Design 

Figure 20 describes the high-level architecture of the Triple Monitoring Engine and QoS 
Evaluator components, following the requirements defined in Section 8.1. As it is shown, the 
metrics collector is in a central place, receiving information from the compatible technologies 
(REQ-TM-7 to REQ-TM-12) and feeding both the metrics getter and, subsequently, the 
pub/sub mechanism and the database, which is accessed by Grafana. Finally, the QoS 
evaluator accesses the metrics collector through the API to read and evaluate the KPIs. 

 

 

Figure 20 – Triple Monitoring Engine & QoS Evaluation – conceptual view. 

 

Figure 20 shows the interaction between the triple monitoring engine (Prometheus for KPI 
monitoring and RabbitMQ for pub/sub). As it is shown, each component starts its own thread. 
First, Prometheus focuses solely on periodically retrieving measures for the KPIs and showing 
them to the user and administrators of the system. Second, RabbitMQ is used for managing 
the messages between components. Subscribers, such as the QoS Evaluator, register in the 
system and are notified every time that there has been a change in the data evaluated by 
Prometheus. The monitoring metrics getter directly queries Prometheus for obtaining these 
data and puts them to RabbitMQ. 
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The QoS Evaluator is designed synchronously react to Prometheus updates. Thus, it performs 
a periodical check on Prometheus’ metrics and, for each value, the component compares it 
to the agreed QoS. If the minimum agreed QoS (minimum expected performance for the KPIs) 
has been violated, the QoS Evaluator simultaneously raises an alert to the system and 
communicates this violation to Prometheus, so violations are also monitored as a KPI. 

 

Figure 21 – Interaction between monitoring and QoS Evaluator components. 
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Figure 21 shows the interaction between the Triple Monitoring and QoS, and the rest of the 
system. As described before, the Triple Monitoring Engine can provide information on the 
performance of the system, compared against the expected QoS. This comparison, carried 
out in the QoS Evaluator component, triggers and alert every time that the minimum agreed 
QoS is not respected. This alert is intercepted by the ADS Deploy component, which decides 
if it is necessary to re-deploy the environment. 

 

Figure 22 – Interaction between Triple Monitoring Engine, QoS Evaluator and ADS Deploy components. 

8.2.1. Integration details: LeanXcale 
LeanXcale provides monitoring information for its two major components (REQ-TM-8): the 
data nodes of its key-value distributed storage and the instances of its Query Engine. It is 
important to note that each deployed data node contains both an instance of the storage 
along with an instance of the Query Engine, so that the latter can exploit data locality. The 
query engine is written in Java and provides monitoring information using the dropwizard 
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framework19. The advantage of the latter is that it can additionally provide statistical 
information on a monitoring metric, like mean time, mean time between a period, the 
histogram of the metric etc. Dropwizard can be used with a JMX20 (Java Management 
Extensions) plugin which publishes the metrics as managed beans via the JMX. Other metrics 
are also published and are available directly via the JMX, while the use of the latter allows to 
take advantage of Java’s built-in monitoring information which is available for every java 
virtual machine (i.e. number of threads, memory usage, garbage collection statistics, etc). 
Additionally, the usage of JMX to publish monitoring information makes the integration with 
Prometheus to rely on the JMX-Exporter. Query engine’s monitoring information can be 
grouped by specific categories (version, network, logger performance, query executions, 
general information etc.). 

Apart from the Query Engine, a data node also contains the key value storage nodes 
themselves, which are part of the adaptable distributed storage. The latter is written in C and 
can provide monitoring of low level information. Data node’s built-in functionality exposes 
statistics and monitoring information in the standard output. Due to this, there has been 
implemented a routine that periodically takes this output as its input and transforms it to 
JSON files, known as metrics. Then, Prometheus can be configured to pull these files from the 
predefined location to load this monitoring information. However, this requires a static 
configuration and would need to restart Prometheus system, each time the storage is being 
scaled in/out and new nodes are added/removed. Due to this, an LXS monitoring proxy will 
be provided, that will be configured with Prometheus, and take the responsibility to collect 
the monitoring information of all data nodes at run-time, considering possible redeployments 
(for more information about the design of the Adaptable Distributed Storage see D4.1). 

8.2.2. Integration details: CEP 

The CEP provides monitoring information of the queries (REQ-TM-10). The UPM CEP exports 
all metrics through a component, the Metric Server. Figure 23 shows the metric server in the 
CEP, all CEP components (Instance Managers and Orchestrator) send their metrics using a 
push-based socket protocol to the Metric Server (black arrows). The Metric Server opens a 
java socket for receiving metrics from the other components and makes available these 
metrics to Prometheus through an HTTP server. Prometheus is configured with a new job 
targeting the Metric Server to pull the CEP metrics (green arrow). 

The CEP leverages Prometheus aggregation functions to send raw metric values minimizing 
the overhead of metric processing in the components.  

The list of available metrics is the following: 

- Orchestrator 

o Is Active: binary value. 1 means the Orchestrator is running 

o Active Instance Managers: int value. Number of running Instance Managers. 

o Registered Queries: int value. Number of registered queries. 

o Deployed Queries: int value. Number of deployed queries. 

- Instance Manager 

o Is Active: binary value. 1 means the Instance Manager is running 

                                                 
19 https://metrics.dropwizard.io/4.0.0/ 
20 https://en.wikipedia.org/wiki/Java_Management_Extensions 

https://metrics.dropwizard.io/4.0.0/
https://en.wikipedia.org/wiki/Java_Management_Extensions
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o CPU Load: double value. Percentage of CPU used by the Instance Manager Java 

process. 

o Events received: long value. Counter of the events received by the IM 

o Events sent: long value. Counter of the events sent by the IM. 

o Results: long value. Counter of the result events sent to clients. 

o Sub-query Instance counter: long value. Counter of the events processed by a 

sub-query instance. 

o Operator counter: long value. Counter of the events processed by an operator. 

o Operator latency: double value. Latency of the operator processing time. 

 

Figure 23 – Prometheus-CEP integration – conceptual view. 

8.2.3. Integration details: Spark 
 

Apache Spark is involved in BigDataStack for big data layout and data skipping as described in 
the deliverable 4.1 section 6. Thus, IBM and NEC are interested by metrics generated by 
Apache for they components for improvement, prototyping and adaptation reasons. 
BigDataStack will use SparkMeasure21 project which needs to be imported in a Spark driver 
(spark application). For each SQL query executed, a set of metrics will be gathered then send 
to the triple monitoring engine via the pushgateway as described in the Figure 9. Spark 
Measure establishes connection with different spark executors created for executing SQL 
query then collects all metrics produced. Since those values concern a single SQL execution 
but they are coming from different executors, Spark Measure aggregates them (sum, max) 
before being dispose to the end user. The approach used until now in BigDataStack is to 
format those metrics for being compatible with Prometheus naming standard. 
 

                                                 
21 Spark Measure, https://github.com/LucaCanali/sparkMeasure 
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Figure 24 – Prometheus-Spark integration – conceptual view. 

The list of available metrics generated by this library is the following: 

• numStages 

• numTasks 

• elapsedTime 

• stageDuration 

• lexecutorRunTime 

• executorCpuTime 
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• resultSerializationTime 
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• shuffleWriteTime 

• resultSize 
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8.3. Early Prototype 

In an early prototype, a Prometheus deployment has been integrated with the QoS Evaluator. 
The communication between both is done directly, bypassing RabbitMQ, through 
Prometheus’ API REST. Prometheus has been configured to evaluate the following low-level 
criteria: 

- Ingestion of metrics from the three levels: 

o Resource clusters: Kubernetes / OKD 

o Data services: LeanXcale, Minio, Spark, CEP 

o Application services 

The QoS Evaluator has also been deployed and integrated with the system, along with a 
minimum QoS based on the value of the “spark response time” variable. If the value of this 
KPI goes over certain Service-Level Objective or SLO (threshold or setpoint), then the QoS is 
considered to have been violated and the system registers it. This information is accessible 
through Prometheus and Graphana. 

 

Figure 25 – Configuration of the Kubernetes monitoring in Prometheus. 
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Figure 26 – Kubernetes metrics visualization in Grafana. 

In CEP early prototype, a module has been implemented to export metrics to Prometheus. 
Moreover, Grafana has been integrated in the CEP deployment to create a Dashboard and to 
check that metrics are being as expected. Different kind of dashboards can be created to 
observe different metrics obtained directly from Prometheus and to create aggregated 
metrics from the previous ones. 

 

Figure 27 – CEP components performance visualization with Grafana. 
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Figure 27 shows how these metrics are visualized in Graphana. There are two instance 
managers, IM1 and IM2. The two graphs on the top show the CPU consumption evolution of 
each instance manager.  Both instance managers run two subqueries (SubQueryInstance-1 
and SubQueryInstance-3 in IM1 and SubQueryInstance-2 and SubQueryInstance-4 in IM2). 
The evolution of the throughput of each subquery is shown in the other graphs. 

Next steps for this first early prototype are the deployment of the CEP platform in the testbed 
and the integration with the Prometheus and Graphana process that will be running in the 
same Big Data Stack testbed. 

8.4. Use Case Mapping 

The Triple Monitoring and QoS Evaluation components will be monitoring and evaluating 
certain key-performance indicators (KPIs) which need to be kept above a certain Service-Level 
Objective (SLO) specified by the data scientist of the application engineer. 

In the case of the ATOS WORLDLINE-EROSKI use case, and following the experimental 
scenarios described at Section 4.1, the first experiments will evaluate and enforce two KPIs: 
the response time and throughput of the analytics services comprising a recommender 
system. While the Triple Monitoring collects metrics at different levels of the BigDataStack 
platform (application, data services and resource cluster) to compute the KPIs, the QoS 
Evaluation analyses the evolution of those KPIs to determine whether the SLOs are being met; 
If this is not the case, it notifies the QoS violations to the Dynamic Orchestrator.  

8.5. Experimental Plan 

As discussed, the Triple Monitoring Engine and QoS Evaluator components assess the 
performance of a particular CDP Playbook in the system. These components support the ADS-
Ranking in choosing the most optimal CDP Playbook to ensure performance.  

During the experimental plan it will be demonstrated that metrics at different levels (system 
and application level) can be dynamically monitored and evaluated as part of the same Quality 
of Service KPI. 

8.5.1. Background and Related Work 

The performance of a Cloud service has already been addressed in bibliography. For example, 
de Vaulx et al. [4] developed a model for the performance of the Cloud at an application level 
(Quality of Service, availability, reliability, etc.). This is consistent with the services offered by 
most Cloud providers, which ensure the user a minimum availability time during the lease. On 
the other hand, the cloud provider is interested in optimizing the performance and utilization 
of the data centre at a system level [5], (manageability, fault tolerance, energy consumption, 
etc.).  

These two levels of evaluation are opposed (the user pushes for a better QoS, while the 
provider requires a more efficient use of resources), and there is not a standard approach to 
unifying the concerns of both. A compromise between the parts is usually the approach, 
economical (the provider makes a worse use of resources and the price to the user is 
increased), moral [6], etc. However, to the best of our knowledge, there is not a centralized 
approach to ensure the performance of metrics at both levels (application and system level) 
simultaneously. 
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8.5.2. Evaluation Methodology and Metrics 

The testbed used for this experimental plan will be the same as described in Section 4, keeping 
consistency with the rest of components. Data will be retrieved from real-life scenarios 
provided by the Use Case partners, which are also described in Section 4. The metrics 
retrieved and evaluated will be related with the UCs, while exposing the capabilities of the 
system to evaluate simultaneously characteristics at the two levels. 

From the UCs we obtain two main metrics: throughput and response time. The former 
evaluates the environment metrics (platform level), while the latter measures the behaviour 
of the application towards the user (application level). 

The metrics considered at a platform level are: 

- Disk usage (%): The percentage of disk which is being used. 
- Memory usage (%): The percentage of memory which is being used. 
- CPU usage: Distribution of load in the CPU. 

The metrics considered at the application level are: 

- Availability (% of time): Percentage of time which the application is down. 
- CPU: Minimum computational power claimed by the application.  

These metrics will be weighted according to the application needs. The weights of each 
metric’s value will be determined in future iterations. 

During the experimental evaluation a set of experiments will be run, where the data will be 
unchanged, and the virtual infrastructure is adapted. These experiments target to evaluate 
the response of the triple monitoring engine and QoS evaluator under different situation 
(under-provision of resources, near-optimal and over-provision of resources). The experiment 
will evaluate the number of QoS violations per unit of time, namely: 

- Platform metrics violations: Violations involving the system’s performance. 
- Application metrics violation: Violations involving the application’s performance. 
- Mixed metrics violation: Violations involving any/all the above metrics. 

The experiments will start on a system with solely 1 container, an extreme case of under 
provision. In each new experiment, the number of containers will be increased by a certain 
amount (to be determined in future iterations by observation of the data and expected 
computational requirements). As the number of containers increases, the violations in the 
system will go from the application level (under provision of resources) to the platform level 
(over provision of resources). During these experiments, it is expected that the near-optimal 
configuration will be reached. The set of experiments will stop once it is proven that adding 
new containers does not increase the performance of the system. 

8.6. Next Steps 

The next steps regarding the Triple Monitoring and QoS Evaluator components are many-fold: 

- Integrating the communication with RabbitMQ: While RabbitMQ has already been 
deployed, it has yet to be used to deliver messages between the QoS Evaluator and 
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the Triple Monitoring Engine. In the next phase, it will be forced the communication 
in a pub/sub manner, using RabbitMQ. 

- Complete integration with the rest of technologies 

- Integrating Prometheus with a prototype application: Once an application is deployed, 
Prometheus will be integrated with it to measure real-life KPIs. 

- Choose application metrics 

- Running experimentation 
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9. Information-Driven Networking 

The Information-Driven Networking mechanisms provide a set of functionalities for traffic 
engineering and network management by taking into consideration inter- and intra-
knowledge and requirements of data intensive operations and applications. These 
requirements concern services prioritization, time criticality constraints and security aspects 
and are controlled by means of labels and selectors to enforce specific network policies. This 
is achieved by defining through rules the connections that are allowed or not allowed to 
specific services or specific nodes in the BigDataStack cluster. 

The outcome of the Information-Driven Networking mechanisms will be to translate these 
requirements into networking primitives that achieve the desired dissemination, regulatory 
compliance and sharing of the information in the BigDataStack environment.  

9.1. Requirements specification 

To facilitate the understanding of the design as well as the challenges addressed by this 
component, the requirements related to this component have been brought from D2.2 and 
literally included into this section. Please note the following requirement tables are compiled 
together with the rest of requirements of BigDataStack in D2.2, and that they are included in 
here for the reader’s convenience. 

 Id Level of detail Type Actor Priority 

REQ-IN-01 Software FUNC ROL-02 MAN 

Name Information-Driven Networking based on type of data 

Description The Information-Driven Networking mechanisms enforce a set of policies by 
specifying the rules of how two or more components can communicate 
(send/receive data) with each other according to the available resources. 

Additional 
Information 

A different policy is enforced based on different incoming data 
requirements, following the type of processing requirements (stream, 
micro-batch, batch) and the type of data (structured, semi-structured, 
unstructured). 

Table 44 - Network Policies based on type of data (software requirement). 

 Id Level of detail Type Actor Priority 

REQ-IN-02 Software FUNC ROL-02 MAN 

Name Information-Driven Networking based on application requirements 

Description The Information-Driven Networking mechanisms enforce a set of policies by 
specifying the rules of how to handle applications with different 
requirements according to the available resources. For instance, an 
application with analytics requiring real-time data processing may impose 
time-critical constraints on the handling, operation and transformation of 
data. 
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To support online analytics and decision making in time-critical conditions 
specific network policies need to be applied to deliver the results within 
predefined time constraints.   

Additional 
Information 

The Data Scientist can set an “allow/deny access” policy regarding the set 
of applications and their requirements (real-time, close to real-time needs) 
accessing the backend services of the BigDataStack environment to 
prioritize/isolate the set of ingress/egress workloads that are enabled/dis- 
based on their IP & Port in order to achieve efficient services interaction. 

Table 45 - Network policies based on application (software requirement). 

9.2. Design 

Through the Information-Driven Networking tool the Data Scientist declares her intend to be 
realized by the underlying system to translate either the data or the application requirements 
into specific networking primitives that achieve the desired Service-Level Objective (SLO). This 
objective may refer to various kinds of traffic – streams, batches and micro batches – get the 
isolation/priority of availability and bandwidth that are needed to serve the network users 
effectively. With the convergence of all data and services in the same network, the 
Information-Driven Networking will manage traffic according to the network utilisation, the 
applications requirements and the communication latency without compromising the 
functionality of the network. Using policy statements, either the Network Administrators or 
the Data Scientists can specify which kinds of service need to be given priority, at what times 
and on what part of their IP based protocol. 

As all the mandatory building blocks of BigDataStack are containerized, a pod representing 
the basic building block in Kubernetes, encapsulates an application container (or multiple 
containers). Therefore, a set of labels and selectors need to be defined to assign key/value 
pairs to pods and set up the expressions that combine these labels to identify the traffic 
from/to individual containers, virtual machines and hosts that it needs to be handled before 
it is routed/delivered to its destination. Then, the network policy definition includes a pod 
selector and the rules that apply to all the pods that meet the selector criteria. These rules 
are applicable to egress and ingress resources establishing connections to the pods, refer to 
labels with specific IPs or IP ranges and can permit or restrict communication to specific ports 
or allow/deny access to/from specific namespaces. For instance, there may be various 
namespaces serving different needs such as client and UIs services/applications. To configure 
network policies enforcement specific services (frontend, backend) need to be exposed to 
specific namespaces (client, UIs). In the following, we present an example of controlling 
ingress traffic by giving an indicative network policy definition.  

kubectl create -f - <<EOF 

apiVersion: networking.k8s.io/v1 

kind: NetworkPolicy 

metadata: 

  name: access-nginx 

  namespace: sample-policy-demo 
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spec: 

  podSelector: 

    matchLabels: 

      run: nginx 

  ingress: 

    - from: 

      - podSelector: 

          matchLabels: {} 

EOF 

Table 46 – An indicative network policy definition for ingress traffic. 

To address the challenges of a specific application, its requirements and the respective 
policies enforcement, a set of mechanisms operating at the services layer are expected to set 
up the appropriate attributes to understand the virtual hosts, URLs and other HTTP headers. 
This functionality implements the policy enforcement endpoint inside the pod as sidecar 
container in the same network namespace. This approach is highly flexible and HTTP aware 
and facilitates to apply policies in support of operational goals, such as service routing, 
retries, circuit-breaking, etc. 

Containers networking is realised by Networking as a Service (through Neutron in OpenStack) 
and easily deployed containers (through Magnum either as Virtual Machines or Physics 
Machines). The idea is to bridge networking functionalities supported by Neutron for 
Containers Use Cases using abstraction mechanisms (exploiting functionalities of Kuryr22, 
presented in section 5). The outcome is to deliver Neutron networking and services to Docker 
containerised services. 

The Information-Driven Networking mechanisms also operate at the network layer. The latter 
gives the advantage of being universal. Our focus is to address the challenges arising from the 
diverse data types (i.e., stream, micro-batch, batch) to enforce policies to DNS, storage 
services (i.e., scalable storage of LeanXscale, Object Store, etc.), real-time streaming, and a 
plethora of other services that do not use HTTP. This functionality implements the policy at 
the host node outside the network namespace of the guest pods. The workloads in the 
BigDataStack environment can communicate without IP encapsulation or network address 
translation for bare metal performance, which enables easier troubleshooting, and better 
interoperability. In settings that require an overlay, the Information-Driven Networking 
mechanisms will work with tunnelling. This approach is universal, highly efficient, and isolated 
from the pods and facilitates to apply policies in support of security and data privacy goals. 
In the following, we present an example of controlling communications to HTTP GET requests 
by giving an indicative network policy definition which consists of three policy objects.  
 

# Restricting customer’s communications to HTTP GET requests. 

kind: SampleNetworkPolicy 

                                                 
22 Kuryr. https://wiki.openstack.org/wiki/Kuryr 

https://wiki.openstack.org/wiki/Kuryr
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metadata: 

  name: customer_app 

spec: 

  selector: app == 'customer_app' 

  ingress: 

    - action: Allow 

      http: 

        methods: ["GET"] 

  egress: 

    - action: Allow 

 

# The customer_app is the consumer of this service. Restricting incoming connections to 
customer_app.  

kind: SampleNetworkPolicy 

metadata: 

  name: summary 

spec: 

  selector: app == 'summary' 

  ingress: 

    - action: Allow 

      source: 

        serviceAccounts: 

          names: ["customer_app"] 

  egress: 

    - action: Allow 

---------------------------------------------------------------------------------------- 

# Restricting access to LXS. Only the summary microservice has direct access to LXS data
base.  

kind: SampleNetworkPolicy 

metadata: 

  name: LXS_db 

spec: 

  selector: app == 'LXS_db' 

  ingress: 

    - action: Allow 

      source: 

        serviceAccounts: 
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          names: ["summary"] 

  egress: 

    - action: Allow 

Table 47 – An indicative network policy definition for controlling HTTP GET requests.  

In the following figure, we present the high-level functionalities of the Information-Driven 
Networking tool in a UML Components diagram.   

 

Figure 28 – Information-Driven Networking UML. 

9.3. Early Prototype 

The Information-Driven Networking is not currently delivering an early prototype as it starts 
at M13. However, a thorough review of Software Defined Networking (SDN) mechanisms in 
cloud environments has been made to start the development before M13 and make available 
an early version of the Information-Driven Networking in M18. 

9.4. Use Case Mapping 

The Data Scientist uses the Information-Driven Networking tool, to define metadata and 
means of communication to apply tailored controls to data intensive operations and 
applications related with analytic tasks according to specific requirements, by also including: 

• The identification of the end-to-end application objectives in terms of specifying KPIs 
and criteria for optimal networking management and engineering; 

• The definition of the constraints arising from the type of data to be processed (data 
transfer, liveness, readiness among services) and the requirements of the application 
(time criticality, security, privacy); 

• The validation of the applied network controls by evaluating that the policies have 
been correctly enforced and that resources are distributed among consumers as 
requested.  
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Figure 29 – Mapping of Information-Driven Networking tool with BDS Use Cases. 

9.5.  Experimental Plan 

The Experimental Plan regarding the Information-Driven Networking includes to firstly set up 

the services and resources interacting within the BDS cluster and then conduct a set of 

scenarios including simple and more complex policies at network and application level. The 

simple policies include a set of isolation rules allowing/restricting access to specific pods and 

then we will proceed with more complex policies which may include the management of 

frontend and backend services. 

This plan includes diverse configuration in yaml files with different policyTypes (i.e. Ingress, 

Egress) and PodSelector (matchLabels in/out app) to validate when specific policy type is 

enforced (i.e., allowed/restricted). 

9.6.  Next Steps 

In the proceeding time period, we will work on with the early development of the 

Information-Driven Networking mechanisms and their experimentation with variable 

scenarios by enforcing different policies in diverse application requirements and for multiple 

constraints imposed by the data types. The use cases and the involvement of the Data 

Scientists will facilitate to address the main functionalities and deployment considerations of 

this tool coupled with the expressed requirements. 
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