

A seafarers tale: Real-time Ship Monitoring

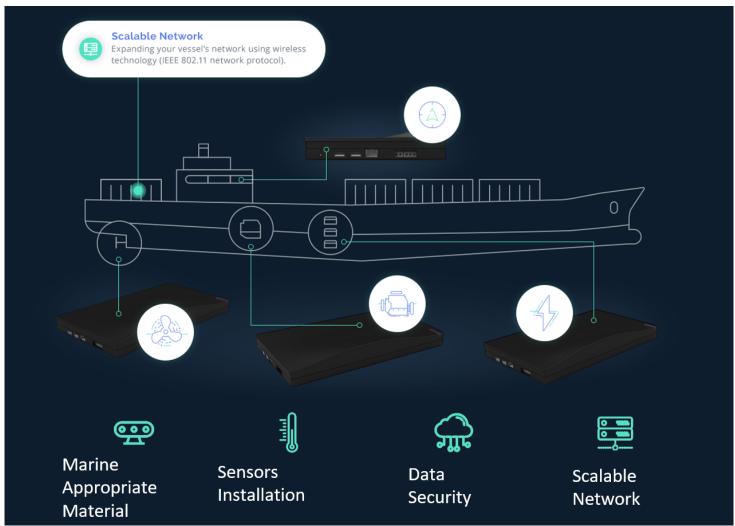
Dr. Stathis Plitsos, Danaos Corp.

splitsos@danaos.gr

Danaos Corporation

- One of the largest, independent owners of modern large-size container-ships.
- A proven track record of operational excellence and technological leadership.
- Our distinct edge in advanced shipping technology and long track record of
 - safety,
 - efficiency and
 - environmental responsibility,
- Helped us forge lasting relationships with our customers
- Our deep understanding of the shipping double us to get involved quite early (1980s) into souware for shipping as well.

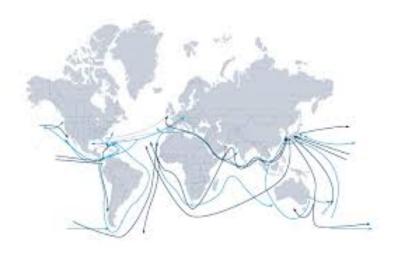
Real-Time Ship Management Objectives



On-board installations

3igDataStack Market needs

- Simple data logging is not a solution anymore
- Ignorance and over-information are the two sides of the same coin
- Actionable Information is required from the end-user
- Analytics over big data is mandatory

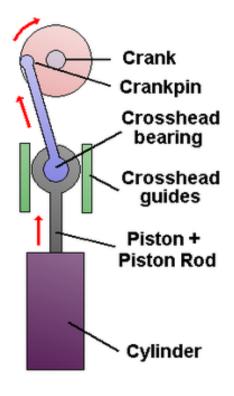


Storyboard - scenario (1/5)

- Vessels have time-constrained routes
- When a main engine part fails unexpectedly
 - The vessel may go off-hire
 - Chartering revenues decrease
 - Urgent part replacement increases cost
 - Bad company image
- Finding potential failures allows
 - Timely ordering of spare parts
 - Replacement of parts before failure

Storyboard - scenario (2/5)

- Main-engine malfunctions is a vast problem
- We focus on Cross-head Bearings malfunctions
 - Evolve gradually
 - Can only be detected with on-board inspection
 - No known correlation of metrics to predict it



- Common practice imposed by charte
- Used to save fuel but
- Causes bad lubrication of the cylinder
- We wish to predict these breakages
- This physical phenomenon is hidden in the data

Storyboard - scenario (3/5)

Seatrade Maritime News

Home News → Regions → Sectors → Live From → Jobs Downloads → Magazine

Home > News > Americas > Asia > The economics of slow steaming

The economics of slow steaming

boost the bottomline.

Slow steaming is no longer a new concept to shipping. The practice of deliberately slowing down the speed of a ship is in fact a common operating feature of today's shipping market as a way to lower costs by reducing fuel consumption. And with shipping lines trying to stay profitable in the present weak freight market, slow steaming has proven a good way to trim operating expenditures so as to

Storyboard - scenario (4/5)

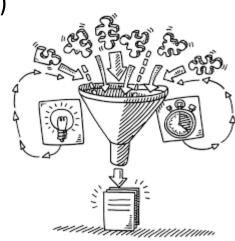
Technical Challenges

- Many parameters are related to the malfunction
- Difficult to accurately predict failures
- Data-loss may occur (due to broken sensors onboard)
- Malfunction pattern identification seems to be data intensive and computationally demanding

Storyboard - scenario (5/5)

Operational Challenges

- Premature Alarms
 - Increase the operating costs
 - Cause ordering of unnecessary parts
- Part replacement price depends on
 - Where?
 - When?
 - Who?



Used Data

- Operational Data: Telegrams
 - 47K records
 - Every 12 hours or upon arrival/departure
 - Updated when an error is identified (rarely)
- General-purpose sensor data
 - 21 different sensors
 - 64M records
 - Per-minute basis
- Main Engine sensor data
 - 100 different sensors
 - 64M records
 - Per-minute basis
- Given our customer contracts, we expect a big rise in the number of monitored vessel, thus, this volume will increase dramatically.

BigDataStack added-value

- Real-time stream processing by distributed CEP to identify
 - Sensor malfunctions
 - Business rules violations
- Preventive maintenance
 - Taps on the Data Quality Assessment service
 - Efficient
 - Considers all available data-sets by the deployment configurations
- Seamless Data movement and Data Analytics to handle data sets distributed both at LXS and Object Store
- Enhanced SQL query performance against (even remote) Object Stores made possible by the data-s technologies

Thank you!


Data Quality Assessment Tool

- 7 A data quality assessment component
- Performs domain-agnostic, probabilistic error detection
- Following a supervised learning approach
 - Deep neural networks as a likelihood model
 - Given a data set , compute a model
 - Output: A probability for each record that is valid

Predictive Maintenance and Data Quality Assessment

BigDataStack

Predictive Maintenance

- Combination of different algorithms
 - Supervised Learning
 - Semi-supervised Learning
 - Unsupervised Learning
- XC Boost
 - Labeled data with a static window of 30 days prior to defect
- One-Class Support Vector Machine (SVM)
 - Trained on data with no history of defects
- Multivariate Long short-term memory (LSTM)
 - Trained on data with no history of defects
- Rolling Weighted Permutation Entropy
 - Higher values of entropy (more information) indicates abnormal operation

