
Reinforcement Learning based Orchestration for
Elastic Services

Mauricio Fadel Argerich, Bin Cheng, Jonathan Fürst
NEC Laboratories Europe, Heidelberg, Germany

mauricio.fadel@neclab.eu, bin.cheng@neclab.eu, jonathan.fuerst@neclab.eu

Abstract—Due to the highly variable execution context in
which edge services run, adapting their behavior to the execution
context is crucial to comply with their requirements. However,
adapting service behavior is a challenging task because it is hard
to anticipate the execution contexts in which it will be deployed,
as well as assessing the impact that each behavior change will
produce. In order to provide this adaptation efficiently, we
propose a Reinforcement Learning (RL) based Orchestration
for Elastic Services. We implement and evaluate this approach
by adapting an elastic service in different simulated execution
contexts and comparing its performance to a Heuristics based
approach. We show that elastic services achieve high precision
and requirement satisfaction rates while creating an overhead
of less than 0.5% to the overall service. In particular, the
RL approach proves to be more efficient than its rule-based
counterpart; yielding a 10 to 25% higher precision while being
25% less computationally expensive.

Index Terms—edge computing, fog computing, reinforcement
learning, self-adaptive systems

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

I. INTRODUCTION

Increased data traffic and network utilization are one of the
biggest challenges for network operators nowadays. One of the
reasons is the massive amount of data generated by devices in
the edge in the context of the Internet of Things (IoT). Edge
computing [7] allows network operators to reduce network
stress and improve service responsiveness by allocating com-
putation closer to data producers and consumers. Nonetheless,
edge processing hardware is constrained and heterogeneous,
which makes it hard to provide cloud-like elasticity features
(i.e., scale out) that are necessary to react to the burstiness of
typical IoT loads (e.g., loads that are based on user behavior or
interaction). For example, the load of a local edge server that
serves an augmented reality (AR) application [4] is directly
correlated to the number of active users. Too many active users
result in exhaustive response times and poor user experience.

To address such problems, we proposed in our previous
work [6], edge hosted services need to dynamically adapt
to the current execution context to better comply with their
non-functional application requirements or Service Level Ob-
jectives (SLOs) together with the execution framework. We
call this concept “Elastic Services”. However, adapting service
behavior to a given context is a challenging task, because it is
hard to anticipate the scenarios the software might encounter
(e.g., different loads or wireless link quality [2]) as well as to
assess the impact that each behavior change will produce.

In this work, we propose a Reinforcement Learning (RL)
based orchestration to adapt services and applications be-

havior during runtime so they best adhere to non-functional
requirements like response time. Our approach starts exploring
different behavior alternatives, and learns –based on its own
experience– the best behavior for the current and potentially
complex execution context. We implement and evaluate a
prototype of this approach that provides high satisfaction of
service requirements while being computationally inexpensive.

Our main contributions are as follows:
• Definition of a RL based approach and its elements—

actions, states and reward—to adapt services to their
current execution context.

• Evaluation of the RL based approach and its comparison
to a Heuristics based approach, by means of simulation.

II. MOTIVATION

To illustrate the complexity of dynamically deciding on
the best adaptation, we introduce a typical video analysis
application: the Lost Child Application. The application works
in the following way: if a child goes missing, law enforcement
asks their parents for photographs of the child and a facial
recognition classifier is trained with them. Then, a service is
deployed using existing connected cameras and edge servers
in the city to analyze the video feeds and to locate the child.
When a matching face is found, a notification is sent to nearby
law enforcement officers. This application can be split in two
components: (1) an offline module, which is trained with
pictures of the child in a server and (2) an online module, a
face detection and matching service that is deployed in several
devices and is in charge of finding the child. We will focus
our attention on the latter.

The face detection and matching service is composed by
the following steps, translated as functions of the service:

1) Capture image: the image is captured by the camera.
2) Image preprocessing: different preprocessing steps

such as resizing, colorization, etc., are performed to im-
prove the accuracy of the face detection and recognition.

3) Face detection: a face detection classifier is applied to
the preprocessed image and each face is extracted and
returned.

4) Face Recognition: for each face that was found in the
image, the previously trained classifier that matches the
face of the lost child is applied.

5) Notify law enforcement: a notification is sent to nearby
police officers indicating the location of the child.

ar
X

iv
:1

90
4.

12
67

6v
1

 [
cs

.D
C

]
 2

6
A

pr
 2

01
9

A small end-to-end latency is necessary to ensure a high
frame sampling rate, so the event of missing the child is
unlikely to happen, even if it only appears briefly on the
video feed, e.g., when the child is moving. The requirement
is to have at least one frame analyzed per second, which is
translated into having a maximum end-to-end latency of 1 s
for each analyzed frame. At the same time, it is desired that
the service performs with the highest precision possible.

In order to comply with these requirements, it is necessary
to adapt the service behavior to the current execution context:

• The hardware capabilities of the device in which the
application or service executes affects its performance,
e.g., a device that can use a graphic accelerator to speed
up matrix multiplication will be able to process faster
neural network algorithms than one without.

• Different camera input results in different performance.
For example, in the face detection and matching service,
analyzing a frame with 5 persons is less computationally
expensive than analyzing a frame with 100 persons. All
of these factors generate different latencies for processing
images and therefore affect the requirements satisfaction.

A. Adaptation Knobs
For each function of the service, a number of parameters

can be modified in order to modify the service’s performance.
The optimal parameters configuration varies according to the
specific requirements of the service, its execution context and
its inputs. This means that these values need to be changed
for every device and also during runtime, in order to obtain
the best possible performance.

Furthermore, the number of alternative behaviors grows ex-
ponentially with the number of parameters and the values each
parameter can assume. As shown in Figure 1, even for a simple
service with three different functions many parameters can be
adapted. There are six adaptable parameters, three of them
have four different values (image resize, scale factor and
min neighbors), and three of them have two different values
(colorization, face detection algorithm and face recognizer).
This means that there are 43 ·23 = 512 different configurations
that can be used to adapt the service’s behavior to a given
execution context.

Fig. 1. Different behavior adaptations for the face detection and matching
service

Because of the high number of configurations together with
the uncertainty of their impact on service requirements, finding
the best configuration of parameter values for a given execu-
tion context is a complex task. Choosing this configuration

manually is also ineffective, as there is no universal set of
values that works properly across all devices and contexts. An
automatic approach is needed, one that is able to learn from
the service, its inputs and its execution context, to decide what
is the best parameters configuration for the current execution
context.

III. ELASTIC SERVICES

In this section we introduce the programming model for
service developers to easily define elastic services and also
the underlying edge computing framework to support such a
programming model.

A. Programming Model of Elastic Services

To simplify the development of elastic services, we extend
the traditional dataflow-based programming model [1] to sup-
port service elasticity in the following way.

First, service developers break down the logic of their
services into small processing functions. Each processing
function is called an operator. However, different from the
traditional dataflow programming model, these operators are
parameterized to change their internal execution during run-
time, meaning that each operator is associated with a set
of parameters, and by changing these parameters, we can
control the behavior of the operator on the fly. For example,
a clustering operator can use a parameter to control which
clustering algorithm should be applied for this operator at
runtime. The implementation of an operator can be mapped to
various of dockerized application images that are deployable
and executable in any docker-based environment, either in the
cloud or at edges.

Once operators are defined and their implementation images
are provided, service developers can start to specify a service
topology to represent the abstract processing logic of their
service. A service topology consists of a set of linked tasks and
each task is an annotated operator with a specific granularity.
The granularity of a task determines how many task instances
of the same operator should be instantiated at runtime, based
on the available data.

A service topology must be triggered explicitly by a user-
definable requirement, issued by a consumer or any applica-
tion on-demand. The requirement defines when and how the
defined service topology should be instantiated, which is the
main challenge to be addressed by service orchestration in
general. One important part of the requirement is to cover the
QoS defined by users in terms of required latency, reduction of
bandwidth consumption, or any other high level metrics. The
goal of our service orchestration is to achieve and ensure the
required QoS continuously by making orchestration decisions
adapted to the ongoing workload and also any environment
changes.

B. FogFlow: Edge Computing Framework for Elastic Services

FogFlow[5] is a distributed execution framework that dy-
namically orchestrates elastic services over cloud and edges,
in order to reduce internal bandwidth consumption and offer
low latency. The unique feature of FogFlow is context-driven,

meaning that FogFlow is able to orchestrate dynamic data
processing flows over cloud and edges based on three types
of contexts, including:

System context: available resources which are changing
over time. The resources in a cloud-edge environment are geo-
distributed in nature and they are dynamically changing over
time; As compared to cloud computing, resources in such a
cloud-edge environment are more heterogeneous and dynamic.

Data context: the structure and registered metadata of
available data, including both raw sensor data and intermediate
data. Based on the standardized and unified data model and
communication interface, namely NGSI, FogFlow is able to
see the content of all data generated by sensors and data
processing tasks in the system, such as data type, attributes,
registered metadata, relations, and geo-locations.

Usage context: high level intents defined by all different
types of users (developers, service consumers, data providers)
to specify what they want to achieve. For example, for service
consumers, they can specify which type of results is expected
under which type of QoS within which geo-scope; for data
providers, they can specify how their data should be utilized
and by whom.

Fig. 2. FogFlow System Overview

As shown in Figure 2, by leveraging these three kinds of
context, FogFlow is able to orchestrate elastic IoT services in
a more intelligent and automatic manner. The overall design
of FogFlow has been presented in our previous paper [5]. In
this paper we focus on the algorithms of service orchestration,
which can be applied by the FogFlow system framework to
support elastic services.

IV. DYNAMIC ORCHESTRATION

In order to generalize our approach over services with differ-
ent numbers and types of requirements, we model the problem
as a constrained optimization problem. Specifically,(1) we
model requirements as constraints, e.g., to process documents
with an end-to-end latency less or equal than 1 s or to
run at a cost of less or equal than $10 per hour and (2)
we model service performance, such as precision, accuracy
or battery consumption, as objective. There is an important
difference between the objective and the constraints: whereas
the constraints define a maximum or minimum value for the

variable involved (e.g., latency, cost, etc.), the objective does
not have a minimum or maximum value expected. In this way,
we can define the service requirements as:

maximize
θ

O(θ)

subject to ci(θ) ≤ Ci, i = 1, . . . , N

where:
• θ: is the configuration of parameters used for all of the

operators
• O(θ): represents the objective of the service, which is

determined by the configuration of parameters used
• ci(θ): is a constraint to the service (such as latency), also

determined by θ
• Ci: is the constraint target (e.g., 1 s)
• N : is the total number of constraints.
The developer is in charge of defining the service require-

ments along with the metrics to monitor them, as well as
the parameters that can be adapted and the values they can
assume. During runtime, the system is in charge of finding
the best configuration of parameter values that maximize (or
minimize) the objective while respecting the constraints.

To ensure the correct functioning of the service, the dynamic
orchestration has two main requirements:

• Rapid response. It must adjust the service behavior
rapidly to keep up with the context changes during
runtime. A slow response might mean the violation of the
requirements if the resources are further constrained, or
the loss of improvement in the objective if more resources
become available.

• Low overhead. The dynamic orchestration must not
create a considerable overhead for the system, so most
of the execution time is still used for the service.

We present two approaches that implement this constraint
optimization for service orchestration: (1) a heuristic based
approach and (2) a reinforcement learning based approach.

A. Heuristics based Orchestration

First, we develop a heuristic that is based on the assumption
of a linear trade-off between the objective of the service
and its constraints. This linear trade-off is often seen in
algorithms: more computing intensive implementations are
slow, but produce more accurate results, while less computing
intensive algorithms are faster but result in less accurate
results. Note that even though this trade-off is present in the
use case of the face detection and matching service for the
Lost Child application (see Section II) this is an assumption
which highly depends on the service implementation and the
chosen algorithms. Current online streaming services use a
similar adaptive logic, but in these cases this adaptive behavior
must be specifically implemented for the service, whereas
in our approach the service developer is abstracted from its
implementation.

Our heuristic works as follows: to begin, all of the different
possible configurations of parameter values are constructed
and sorted by their objective value (e.g., expected accuracy).

The configuration with the highest objective value is used to
process the first input. Service requirements are monitored
and if they are not satisfied, the performance is degraded by
using the immediate lower configuration, which is expected to
improve the requirements satisfaction. If the requirements are
met for a number of continuous steps, then the performance
is upgraded. If this upgrade still satisfies the requirements,
then the process is repeated until requirements are not satisfied
anymore, and then the performance is degraded by utilizing
the last configuration that worked within the requirements.
Figure 3 shows a control flow diagram for this approach.

Fig. 3. Control flow diagram of the heuristics based orchestration
B. RL based Orchestration

Second, we develop a Reinforcement Learning (RL) based
optimization to find the best configuration of parameter values
during runtime. The RL based orchestration does not require
a linear trade-off between service objectives and constraints.
Instead, it learns through its own experience. This makes the
RL based orchestration more flexible and able to generalize
over more services than the implemented heuristic.

In RL, an agent can sense its environment and take actions
that affect the state of the environment and generate a numer-
ical reward. The agent does not know in advance what actions
should be taken in each state, its objective is to find the action
that will create the highest reward for each different state [11].

In our RL setup the agent represents the service, and its
environment can be seen as its execution context. The agent
can take actions to adapt to different states of its context,
in order to achieve its goal of performing with the highest
possible performance while respecting the given constraints.
Also, we frame our problem in a discrete time setting, in which
each time step corresponds to the full processing of an input.

In order for the RL approach to be computationally inex-
pensive, we use tabular Q-learning [12]. Tabular Q-learning
defines what action should be taken in each state by maintain-
ing a table in which there is one row for each state, and one
column for each action. The value in each cell is the expected
reward of taking a specific action while being in a given state.
Because of this, it is of particular interest the definition of the
actions and states. In our case, we define them as:

• Actions: each different configuration of parameter values
• States: the current execution environment’s status, the

requirements’ satisfaction in last step and the last con-
figuration of parameter values used

When the service has just started, different parameter con-
figurations are chosen at random and profiled in an online
manner. After this process has been performed a number of
times, the agent knows which configurations perform better in
each state by using the Q table.

More specifically, two different states-actions configurations
are defined and implemented:

Configuration 1
• States: Last latency as % of target [3 values (0-80, 80-

100, 100-∞)], number of last configuration used
• Actions: Number of configuration to be used
Configuration 2
• States: Last latency as % of target [3 values (0-80, 80-

100, 100-∞)], current CPU availability % [3 values (0-50,
50-80, 80-100)], number of last configuration used

• Actions: Number of configuration to be used

Fig. 4. Diagram of the RL based orchestration, configuration 2

The reward indicates how well the agent is performing
according to its objective. In our case, the reward is defined as
the objective (measured in a metric selected by the developer
e.g. precision) if requirements are satisfied, or the negative
deviation of its performance according to the requirements if
these are not fulfilled. Mathematically, we define the reward
function for taking an action a in a given time step t as:

Rt,a =

{
Ot−1, if ∀ci ≤ Ci
−
∑N
i=0

ci,t−1

Ci
∀ci,t−1 > Ci, otherwise

(1)

V. EVALUATION

A. Simulator

To test the orchestration approaches, we have implemented
a simulator in which developers can define elastic services,
by defining a pipeline of operators, and the adaptable param-
eters for each operator. Once a service has been defined, its
functioning can be profiled on a set of inputs and devices
by using a profiler which tests all of the different parameters
configurations repeatedly and record the metrics that will be
later used by the simulator.

We implement the face detection and matching service for
the Lost Child application in this framework and profile it on
a Raspberry Pi 3B+ device with different inputs. The inputs
used are collages with different numbers of faces, from 6 to
192, taken from the dataset Faces94 [10].

B. Environments and Datasets

To define the RL framework, we specify different environ-
ments with the states-actions configurations. The implemented
interface has been inspired by OpenAI Gym environments [3].

We simulate the service execution on a shared device,
which means that the CPU availability varies over time due
to the other services concurrently running. In every step, the
environment simulates the CPU availability as a Markov Chain
varying from 0.3 to 1.0. In this chain, the CPU availability for
a new step has a probability of changing with respect to the
previous step of 0.1, and the variation will be randomly drawn
from a N(0.1, 0.1) distribution.

We create three different datasets by combining the inputs
previously defined:

1) Fixed input: 1000 frames with 48 faces each.
2) Variable input: 1100 frames with varying number of

faces in each image, from 6 faces to 192. The dataset is
composed by blocks of 100 continuous frames with the
same number of faces. The blocks are arranged in the
following way: 6, 12, 24, 48, 96, 192, 96, 48, 24, 12,
6; where each number represents the amount of faces in
the block of 100 frames.

3) Full day input: a dataset that simulates the whole input
of a full day at a train station was built. There are 86400
images, one for every second of the day. The inputs from
the previous item were used, but the number of faces
varies over time to simulate peak and low traffic hours.

In addition, we implement another version of the RL en-
vironment. This version models the random CPU availability
as the previous version but incorporates random inputs. The
inputs have different number of faces and are chosen at random
from the inputs used by the variable input dataset. Because the
number of faces in each input does not change every second
in reality, in each step there is a 0.1 probability of changing
the input with a random sample and 0.9 probability of keeping
the same input as in the previous step.

C. Results

We simulate the face detection and matching service 50
times with each dataset and orchestration approach. In the case
of RL based approaches, the Q-table is started with 0 values for
the first simulation and the following ones use a prepopulated
Q-table using the values produced by the previous simulations.
Table I depicts the results.

Firstly, we implement and test a static service with two
different configurations: one optimized for a high precision
service, and another one optimized for a high latency satisfac-
tion. We can see that the high precision service has a precision
of 1 –this impressive high value can be achieved thanks to the
simple dataset used– but fails to satisfy the latency requirement
very often. The high latency satisfaction service does the
opposite, complies with the latency requirement in most cases
but offers a very low precision.

Secondly, we implement and test an elastic service using
the Heuristics based dynamic orchestration. We can see how
the elasticity of the service helps it to get a good trade-off
between precision and latency satisfaction rates.

Finally, we also test an elastic service using both config-
urations of RL for its dynamic orchestration. Both RL con-
figurations offer a high latency satisfaction as the Heuristics

Static Elastic

Input High
Precision

High Lat.
Satisfaction

Heur. RL1 RL2

Pr
ec

is
io

n Fixed 100 41.95 82.71 91.92 91.44
Variable 100 41.95 75.81 76.36 82.66
Full day 100 41.95 69.99 68.65 77.79
Random 100 41.95 66.26 72.21 83.45

%
L

at
en

cy
Sa

tis
fa

ct
io

n Fixed 79.06 95.78 93.02 94.72 95.00
Variable 66.38 84.97 82.43 81.36 79.04
Full day 72.15 82.22 79.20 79.31 79.06
Random 67.27 86.19 80.22 80.89 83.03

TABLE I
PERFORMANCE OF STATIC AND ELASTIC SERVICES, USING DIFFERENT

DYNAMIC ORCHESTRATION APPROACHES

approach while improving the application’s precision by a mar-
gin of 10–25%, as shown on figure 6. Moreover, the RL con-
figuration 2 – which uses the last requirement’s satisfaction,
last configuration used and current CPU availability—shows
a better performance than the other configuration; because the
agent can take better decisions with more information.

Regarding the requirements for the dynamic orchestration,
our RL based approach uses less than 0.5% of the total
execution time of the application, and produces even a lower
overhead than the Heuristics based approach. This is visible
in the results obtained in Table II. In addition, the learning
based orchestration adapts rapidly to changes as it can be
seen in Figure 5. When the CPU availability drops around
step 485, the logic automatically changes the configuration,
reducing the expected precision but managing to keep func-
tioning within the latency requirement. Afterwards, when the
CPU availability increases again in step 515, the orchestration
changes again the configuration to take advantage of the higher
resources availability and improving the expected precision.

Fig. 5. Response to changes of RL2 based orchestration

Orchestration Total Impact
in total latency

Intel Core
i5-3210M

Heur. 0.29ms 70.52ms 0.42%
RL 0.21ms 70.44ms 0.30%

Raspberry
Pi 3 B+

Heur. 1.31ms* 313.24ms* 0.42%*
RL 0.93ms* 312.86ms* 0.30%*

TABLE II
OVERHEAD OF THE ORCHESTRATION TO THE OVERALL SERVICE. TOTAL

EXECUTION TIMES ARE CALCULATED AS THE TIME USED FOR THE
ORCHESTRATION AND PROCESSING A FRAME OF 6 FACES USING THE

FASTEST PARAMETER CONFIGURATION. (*) PROJECTED TIMES.

confi

Fig. 6. Average precision and latency satisfaction over all datasets for the
different orchestration approaches.

VI. RELATED WORK

There is extensive research in the fields related to our work,
such as self-adaptive systems and utilization of AI to optimize
the performance of applications.

Natural Adaptive Video Streaming with Pensieve [9]
presents a system that generates adaptive bit rate (ABR)
algorithms using Reinforcement Learning. These algorithms
are used for video streaming and must balance a variety of
QoE goals. This work successfully uses a variant of deep
RL, A3C, to create algorithms that adapt to a wide range of
environments and QoE. The NN model runs on the server in
order to avoid the overhead on the client, something which is
not always possible in edge computing.

In Chameleon [8], the performance of video analytics ap-
plications is optimized by performing automatic adaptation of
its configurations. The application’s behavior is customized to
the execution context by selecting different parameter configu-
rations; the best parameter configuration is selected by a logic
inspired by greedy hill climbing combined with periodical
online profiling. However, this research is centered around
applications that use deep convolutional neural networks for
video analytics, while we aim to offer a flexible solution that
can be applied to any kind of application or service.

VII. CONCLUSIONS

Thanks to Elastic Services, developers are able to create
services that adapt to their current execution context, achieving
high requirement satisfaction rates. By using our RL based
orchestration to adapt their behavior, services can achieve an
even better performance with a lower overhead to the system.

This work has shown the efficiency of the RL based orches-
tration through multiple simulations, improving on the results
of the Heuristics based approach. The RL based orchestration
achieves a 10–25% higher precision, while having a smaller
system overhead, consuming 25% less execution time. In
addition, thanks to its capability of learning through its own
experience, the RL based orchestration offers a flexible and
adaptable logic that can be used with very different services.

In the future, we plan to optimize our approach to be
able to handle a large number of parameters and parameter

The research leading to these results has
received funding from the European Com-
munity’s Horizon 2020 research and inno-
vation programme under grant agreement
no 779747.

values, something that is challenging for the tabular Q-learning
method used in this work. In order to do so, we are looking
into hierarchical RL models that will be distributed between
the different processing nodes.

REFERENCES

[1] Tyler Akidau et al. “The dataflow model: a practical
approach to balancing correctness, latency, and cost in
massive-scale, unbounded, out-of-order data process-
ing”. In: Proceedings of the VLDB Endowment 8.12
(2015), pp. 1792–1803.

[2] Nouha Baccour et al. “Radio link quality estimation in
wireless sensor networks: A survey”. In: ACM Trans-
actions on Sensor Networks (TOSN) 8.4 (2012), p. 34.

[3] Greg Brockman et al. “Openai gym”. In: arXiv preprint
arXiv:1606.01540 (2016).

[4] Kaifei Chen et al. “SnapLink: Fast and Accurate Vision-
Based Appliance Control in Large Commercial Build-
ings”. In: Proceedings of the ACM on Interactive, Mo-
bile, Wearable and Ubiquitous Technologies 1.4 (2018),
p. 129.

[5] Bin Cheng et al. “FogFlow: Easy Programming of IoT
Services Over Cloud and Edges for Smart Cities”. In:
IEEE Internet of Things Journal 5.2 (2018), pp. 696–
707.

[6] Jonathan Fürst et al. In: Network and Service Manage-
ment (CNSM), 2018 14th International Conference on.
IEEE. 2018.

[7] Pedro Garcia Lopez et al. “Edge-centric Computing:
Vision and Challenges”. In: ACM SIGCOMM Computer
Communication Review 45.5 (2015), pp. 37–42.

[8] Junchen Jiang et al. “Chameleon: scalable adaptation
of video analytics”. In: Proceedings of the 2018 Con-
ference of the ACM Special Interest Group on Data
Communication. ACM. 2018, pp. 253–266.

[9] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.
“Neural adaptive video streaming with pensieve”. In:
Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. ACM. 2017,
pp. 197–210.

[10] Libor Spacek. “Collection of facial images: Faces94”.
In: Computer Vision Science and Research Projects,
University of Essex, United Kingdom, http://cswww.
essex. ac. uk/mv/allfaces/faces94. html (2007).

[11] Richard S Sutton, Andrew G Barto, et al. Reinforcement
learning: An introduction. MIT press, 1998.

[12] Christopher John Cornish Hellaby Watkins. “Learning
from delayed rewards”. PhD thesis. King’s College,
Cambridge, 1989.

	I Introduction
	II Motivation
	II-A Adaptation Knobs

	III Elastic Services
	III-A Programming Model of Elastic Services
	III-B FogFlow: Edge Computing Framework for Elastic Services

	IV Dynamic Orchestration
	IV-A Heuristics based Orchestration
	IV-B RL based Orchestration

	V Evaluation
	V-A Simulator
	V-B Environments and Datasets
	V-C Results

	VI Related Work
	VII Conclusions

